Early Results of Ionospheric Measurements from the FORMOSAT-3/COSMIC Mission

Stig Syndergaard
Christian Rocken
William S. Schreiner
Douglas C. Hunt

COSMIC Project Office, UCAR

Jiuhou Lei

High Altitude Observatory, NCAR

87th AMS Annual Meeting, San Antonio, TX, 14–18 January 2007
COSMIC – A Six Satellite Constellation

Illustration courtesy of Orbital Sciences Corporation

Launched April 15, 2006, from Vandenberg AFB
All six satellites stacked and launched on a Minotaur rocket.

Initial orbit altitude \(\sim 500 \text{ km} \); inclination \(\sim 72^\circ \).

Currently spacecraft are being maneuvered into six different orbital planes for optimal global coverage (at \(\sim 800 \text{ km} \) altitude).

All satellites are in good health and providing a huge amount of high-quality data.

COSMIC data were officially released to the public on July 28, 2006.
GPS receiver (GOX): \{ Total electron content along links to GPS satellites \\
Ionospheric radio occultations (profiles) & scintillations \\
\}

Tiny Ionospheric Photometer (TIP): Ultra-violet emission from ionosphere

Tri-Band Beacon (TBB): TEC & scintillations on satellite-to-ground links
Overview of GOX ionospheric data

Three main products from the GPS receivers:

- Total Electron Content (TEC) along links to GPS satellites
- Electron density profiles derived from GPS occultations
- Scintillations (recent firmware upgrade should allow S_4 index for all LEO–GPS links to be calculated)
Processed data for cosmicrt

Ionospheric profiles processed at UCAR
April 22, 2006 – first collocated profiles

- FM2 and FM4 within 30 km of each other
- FM2 about 4 seconds behind FM4
- Four seconds later, FM2 is within 1 km of where FM4 was 4 seconds earlier
- FM2 and FM4 orbit altitudes differ by a few hundred meters.
Comparisons with ground-based data

(a) RO (42.6N, 73.96W)
DAY: 212
UTh: 12:33

(b) RO (41.4N, 70.69W)
DAY: 214
UTh: 13:06

(c) RO (38.2N, 76.94W)
DAY: 230
UTh: 17:56

(d) RO (48.4N, 73.14W)
DAY: 231
UTh: 07:40

(e) RO (41.9N, 72.40W)
DAY: 231
UTh: 07:40

(f) RO (41.6N, 67.29W)
DAY: 265
UTh: 00:57

(a) RO (11.7S, 84.76W)
DAY: 181
UTh: 06:35

(b) RO (9.79S, 81.67W)
DAY: 264
UTh: 00:58
Event on August 9, 2006

15:50 UT Enhanced electron density at 400–500 km
Event on August 9, 2006

15:50 UT Enhanced electron density at 400–500 km

15:56 UT Enhancement seems to propagate upward
Event on August 9, 2006

15:50 UT Enhanced electron density at 400–500 km
15:56 UT Enhancement seems to propagate upward
15:59 UT Further upward
15:50 UT Enhanced electron density at 400–500 km
15:56 UT Enhancement seems to propagate upward
15:59 UT Further upward
16:03 UT Further yet
Constellation on August 26, 2006
Event on August 26, 2006

13:01 UT F2-layer peak at ~ 240 km

PRN 14

FM6 13:01 UT (11:31 LT)
FM4 13:09 UT (11:42 LT)
FM3 13:09 UT (11:42 LT)
FM2 13:19 UT (11:58 LT)
FM1 13:30 UT (12:08 LT)

Electron density (1/cm3)

Longitude (degrees)

Latitude (degrees)
Event on August 26, 2006

- **13:01 UT** F2-layer peak at \(\sim 240\) km
- **13:09 UT** F2-layer peak at \(\sim 280\) km
Event on August 26, 2006

13:01 UT F2-layer peak at \(\sim 240 \text{ km} \)
13:09 UT F2-layer peak at \(\sim 280 \text{ km} \)
13:19 UT F2-layer peak at \(\sim 320 \text{ km} \)
Event on August 26, 2006

13:01 UT F2-layer peak at ~240 km
13:09 UT F2-layer peak at ~280 km
13:19 UT F2-layer peak at ~320 km
13:30 UT F2-layer peak at ~360 km
Summary and status

• Currently UCAR/CDAAC process between 2000 and 2500 electron density profiles per day

• We also process about 3000 DCB calibrated TEC arcs per day – useful for assimilation into space weather models

• New firmware (build 4.3) should allow S_4 scintillation index to be calculated for all LEO–GPS links (firmware uploaded to two of six satellites)

• Early results of collocated occultation measurements show excellent agreements – high degree of repeatability of measurements from different platforms

• A few electron density profiles have been verified against ground-based measurements

• Early constellation figuration allows study of ionospheric dynamics when near-collocated measurements are made a few to several minutes apart