Near Real-time Ionospheric Data Products from COSMIC

Stig Syndergaard

COSMIC Project Office
University Corporation for Atmospheric Research

Collaborators

Bill Kuo Chris Rocken
Doug Hunt Bill Schreiner

Space Weather Week, Boulder, CO, Apr 25-28, 2006
COSMIC – A Six Satellite Constellation

Launched April 14 2006 – 11 days ago
All six satellites stacked and launched on a Minotaur rocket.

Initial orbit altitude ~ 500 km; inclination $\sim 72^\circ$.

Will be maneuvered into six different orbital planes for optimal global coverage (at ~ 800 km altitude).

All satellites are in good health and providing initial data.
GPS receiver: \{ Total Electron Content (TEC) to all GPS satellites in view \\
Ionospheric radio occultations (profiles) & scintillations \}

Tiny Ionospheric Photometer (TIP): Ultra-violet emission from ionosphere

Tri-Band Beacon (TBB): TEC & scintillations on satellite-to-ground links
Total Electron Content measurements:

- High-resolution (1 Hz) TEC to all GPS satellites in view at all times
- Can track up to 12 GPS satellites at the same time (9 aft + 4 fore)
- Useful for global ionospheric tomography and data assimilation
Ionospheric GPS occultation measurements:

- High-resolution (1 Hz) occultation TEC below orbit altitude
- Ionospheric electron density profiles from orbit altitude and down
- Ionospheric scintillations using the two limb antennas (50 Hz)
Tiny Ionospheric Photometer measurements:

- Emission (1356 Å) due to recombination of oxygen ions and electrons
- Nadir intensity along sub-satellite track – proportional to $\int N_e^2 dz$
- High quality data on night-side – uncertainty about day-side quality
Tri-Band Beacon measurements:

- Radio signals transmitted from COSMIC at 150, 400, and 1067 MHz
- TEC between the COSMIC satellites and chains of ground receivers
- Amplitude and phase scintillations on the satellite-to-ground links
• About 2500 ionospheric occultations per day
• Profiles of electron density between 100 and 800 km
• Total Electron Content to all GPS satellites in view
First COSMIC ionospheric profiles

C001.2006.111.09.19.G13 (lat = 19N, lon = 53W)
C001.2006.111.09.21.G23 (lat = 24N, lon = 41W)
First Ionospheric Profiles

More COSMIC ionospheric profiles

Altitude (km) vs. Electron density (1/cm³)
Total Electron Content

LEO-GPS Total Electron Content, Flight Module 4, aft antenna

Time in minutes since 23-APR-06, 20:10 UTC

TEC (TECU)
Some Amazing First Comparisons...

Same occultations from two different COSMIC satellites

- FM2 and FM4 within 30 km of each other
- FM2 about 4 seconds behind FM4
- Four seconds later, FM2 is within 1 km of where FM4 was 4 seconds earlier
- FM2 and FM4 orbit altitudes differ by a few hundred meters.
<table>
<thead>
<tr>
<th>Data description</th>
<th>Level/Type</th>
<th>Main products</th>
<th>Resolution</th>
<th>Format</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS receiver data from the POD antennae – one file per COSMIC POD antenna per dump</td>
<td>level 1a podObs</td>
<td>- time - phases - pseudo-ranges - SNRs</td>
<td>temporal: 1 sec</td>
<td>RINEX 2.20</td>
<td>≲ 115 min</td>
</tr>
<tr>
<td>LEO attitude and orbits (from real time navigation solutions) – one file per COSMIC satellite per dump</td>
<td>level 1a leoAtt</td>
<td>- time - attitude param. - position - velocity</td>
<td>temporal: 10 sec</td>
<td>ASCII</td>
<td>≲ 115 min</td>
</tr>
<tr>
<td>Precise LEO orbits – one file per COSMIC satellite per dump</td>
<td>level 1b leoOrb</td>
<td>- time - position - velocity</td>
<td>temporal: 1 min</td>
<td>SP3</td>
<td>≲ 145 min</td>
</tr>
<tr>
<td>IGS Ultra-Rapid GPS orbits (including 24 hr predicted orbits) – one file every 6 hr</td>
<td>level 1a gpsOrb</td>
<td>- time - position - velocity</td>
<td>temporal: 15 min</td>
<td>SP3</td>
<td>0 min</td>
</tr>
<tr>
<td>Absolute TEC to all GPS satellites in view (QC and bias resolved) – one file per COSMIC satellite per GPS satellite per arc</td>
<td>level 1b podTec</td>
<td>- time - absolute TEC - SNRs - Rx & Tx pos. - code biases</td>
<td>temporal: 1 sec</td>
<td>NetCDF</td>
<td>≲ 145 min</td>
</tr>
</tbody>
</table>
COSMIC Data Products and Formats

<table>
<thead>
<tr>
<th>Data description</th>
<th>Level/Type</th>
<th>Main products</th>
<th>Resolution</th>
<th>Format</th>
<th>Latency</th>
</tr>
</thead>
</table>
| GPS receiver data from the POD antennae – one file per COSMIC POD antenna per dump | level 1a podObs | - time
- phases
- pseudo-ranges
- SNRs | temporal: 1 sec | RINEX 2.20 | ≲ 115 min |
| LEO attitude and orbits (from real time navigation solutions) – one file per COSMIC satellite per dump | level 1a leoAtt | - time
- attitude param.
- position
- velocity | temporal: 10 sec | ASCII | ≲ 115 min |
| Precise LEO orbits – one file per COSMIC satellite per dump | level 1b leo Orb | - time
- position
- velocity | temporal: 1 min | SP3 | ≲ 145 min |
| IGS Ultra-Rapid GPS orbits (including 24 hr predicted orbits) – one file every 6 hr | level 1a gpsOrb | - time
- position
- velocity | temporal: 15 min | SP3 | 0 min |
| Absolute TEC to all GPS satellites in view (QC and bias resolved) – one file per COSMIC satellite per GPS satellite per arc | level 1b podTec | - time
- absolute TEC
- SNRs
- Rx & Tx pos.
- code biases | temporal: 1 sec | NetCDF | ≲ 145 min |
COSMIC Data Products and Formats

<table>
<thead>
<tr>
<th>Data description</th>
<th>Level/Type</th>
<th>Main products</th>
<th>Resolution</th>
<th>Format</th>
<th>Latency</th>
</tr>
</thead>
</table>
| GPS receiver data from the POD antennae – one file per COSMIC POD antenna per dump | level 1a podObs | - time
- phases
- pseudo-ranges
- SNRs | temporal: 1 sec | RINEX 2.20 | ≲ 115 min |
| LEO attitude and orbits (from real time navigation solutions) – one file per COSMIC satellite per dump | level 1a leoAtt | - time
- attitude param.
- position
- velocity | temporal: 10 sec | ASCII | ≲ 115 min |
| Precise LEO orbits – one file per COSMIC satellite per dump | level 1b leoOrb | - time
- position
- velocity | temporal: 1 min | SP3 | ≲ 145 min |
| IGS Ultra-Rapid GPS orbits (including 24 hr predicted orbits) – one file every 6 hr | level 1a gpsOrb | - time
- position
- velocity | temporal: 15 min | SP3 | 0 min |
| Absolute TEC to all GPS satellites in view (QC and bias resolved) – one file per COSMIC satellite per GPS satellite per arc | level 1b podTec | - time
- absolute TEC
- SNRs
- Rx & Tx pos.
- code biases | temporal: 1 sec | NetCDF | ≲ 145 min |
<table>
<thead>
<tr>
<th>Data description</th>
<th>Level/Type</th>
<th>Main products</th>
<th>Resolution</th>
<th>Format</th>
<th>Latency</th>
</tr>
</thead>
</table>
| GPS receiver data from the POD antennae – one file per COSMIC POD antenna per dump | level 1a podObs | - time
- phases
- pseudo-ranges
- SNRs | temporal: 1 sec | RINEX 2.20 | ≤ 115 min |
| LEO attitude and orbits (from real time navigation solutions) – one file per COSMIC satellite per dump | level 1a leoAtt | - time
- attitude param.
- position
- velocity | temporal: 10 sec | ASCII | ≤ 115 min |
| Precise LEO orbits – one file per COSMIC satellite per dump | level 1b leoOrb | - time
- position
- velocity | temporal: 1 min | SP3 | ≤ 145 min |
| IGS Ultra-Rapid GPS orbits (including 24 hr predicted orbits) – one file every 6 hr | level 1a gpsOrb | - time
- position
- velocity | temporal: 15 min | SP3 | 0 min |
| Absolute TEC to all GPS satellites in view (QC and bias resolved) – one file per COSMIC satellite per GPS satellite per arc | level 1b podTec | - time
- absolute TEC
- SNRs
- Rx & Tx pos.
- code biases | temporal: 1 sec | NetCDF | ≤ 145 min |
<table>
<thead>
<tr>
<th>Data description</th>
<th>Level/Type</th>
<th>Main products</th>
<th>Resolution</th>
<th>Format</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS receiver data from the POD antennae – one file per COSMIC POD antenna per dump</td>
<td>level 1a podObs</td>
<td>- time</td>
<td>temporal: 1 sec</td>
<td>RINEX 2.20</td>
<td>≲ 115 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- pseudo-ranges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SNRs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEO attitude and orbits (from real time navigation solutions) – one file per COSMIC satellite per dump</td>
<td>level 1a leoAtt</td>
<td>- time</td>
<td>temporal: 10 sec</td>
<td>ASCII</td>
<td>≲ 115 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- attitude param.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precise LEO orbits – one file per COSMIC satellite per dump</td>
<td>level 1b leoOrb</td>
<td>- time</td>
<td>temporal: 1 min</td>
<td>SP3</td>
<td>≲ 145 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGS Ultra-Rapid GPS orbits (including 24 hr predicted orbits) – one file every 6 hr</td>
<td>level 1a gpsOrb</td>
<td>- time</td>
<td>temporal: 15 min</td>
<td>SP3</td>
<td>0 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute TEC to all GPS satellites in view (QC and bias resolved) – one file per COSMIC satellite per GPS satellite per arc</td>
<td>level 1b podTec</td>
<td>- time</td>
<td>temporal: 1 sec</td>
<td>NetCDF</td>
<td>≲ 145 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- absolute TEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SNRs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rx & Tx pos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- code biases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data description</td>
<td>Level/Type</td>
<td>Main products</td>
<td>Resolution</td>
<td>Format</td>
<td>Latency</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Ionospheric occultation excess phases and amplitudes – one file per GPS occultation | level 1b ionPhs | - time
- SNRs
- Rx & Tx pos.
- Rx & Tx vel.
- excess phases | temporal: 1 sec | NetCDF | \(< 145\) min |
| Ionospheric occultation profiles from orbit altitude and down – one file per GPS occultation | level 2 ionPrf | - time
- lat., lon.
- tangent altitude
- occ. TEC
- electron dens. | vertical: 2-3 km | NetCDF | \(< 145\) min |
| Raw TIP (Tiny Ionospheric Photometer) nadir radiance data – one file per COSMIC satellite per dump | level 1a tipBin | - time
- counts
- radiances
- Rx position
- surface lat., lon. | temporal: seconds | TIP native binary | \(< 115\) min |
| Radiances from the TIP – one file per COSMIC satellite per dump | level 1b tipLv1 | - time
- counts
- radiances
- Rx position
- surface lat., lon. | temporal: seconds | NetCDF | \(< 115\) min |
COSMIC Data Products and Formats

<table>
<thead>
<tr>
<th>Data description</th>
<th>Level/Type</th>
<th>Main products</th>
<th>Resolution</th>
<th>Format</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionospheric occultation excess phases and amplitudes – one file per GPS occultation</td>
<td>level 1b ionPhs</td>
<td>- time</td>
<td>temporal: 1 sec</td>
<td>NetCDF</td>
<td>≤ 145 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SNRs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rx & Tx pos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rx & Tx vel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- excess phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionospheric occultation profiles from orbit altitude and down – one file per GPS occultation</td>
<td>level 2 ionPrf</td>
<td>- time</td>
<td>vertical: 2-3 km</td>
<td>NetCDF</td>
<td>≤ 145 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- lat., lon.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- tangent altitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- occ. TEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- electron dens.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw TIP (Tiny Ionospheric Photometer) nadir radiances data – one file per COSMIC satellite per dump</td>
<td>level 1a tipBin</td>
<td>- time</td>
<td>temporal: seconds</td>
<td>TIP native binary</td>
<td>≤ 115 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiances from the TIP – one file per COSMIC satellite per dump</td>
<td>level 1b tipLv1</td>
<td>- time</td>
<td>temporal: seconds</td>
<td>NetCDF</td>
<td>≤ 115 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- radiances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rx position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- surface lat., lon.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data description</td>
<td>Level/Type</td>
<td>Main products</td>
<td>Resolution</td>
<td>Format</td>
<td>Latency</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Ionospheric occultation excess phases and amplitudes – one file per GPS occultation</td>
<td>level 1b ionPhs</td>
<td>- time - SNRs - Rx & Tx pos. - Rx & Tx vel. - excess phases</td>
<td>temporal: 1 sec</td>
<td>NetCDF</td>
<td>≲ 145 min</td>
</tr>
<tr>
<td>Ionospheric occultation profiles from orbit altitude and down – one file per GPS occultation</td>
<td>level 2 ionPrf</td>
<td>- time - lat., lon. - tangent altitude - occ. TEC - electron dens.</td>
<td>vertical: 2-3 km</td>
<td>NetCDF</td>
<td>≲ 145 min</td>
</tr>
<tr>
<td>Raw TIP (Tiny Ionospheric Photometer) nadir radiance data – one file per COSMIC satellite per dump</td>
<td>level 1a tipBin</td>
<td>- time - counts</td>
<td>temporal: seconds</td>
<td>TIP native binary</td>
<td>≲ 115 min</td>
</tr>
<tr>
<td>Radiances from the TIP – one file per COSMIC satellite per dump</td>
<td>level 1b tipLv1</td>
<td>- time - counts - radiances - Rx position - surface lat., lon.</td>
<td>temporal: seconds</td>
<td>NetCDF</td>
<td>≲ 115 min</td>
</tr>
</tbody>
</table>
COSMIC Data Products and Formats

<table>
<thead>
<tr>
<th>Data description</th>
<th>Level/Type</th>
<th>Main products</th>
<th>Resolution</th>
<th>Format</th>
<th>Latency</th>
</tr>
</thead>
</table>
| Ionospheric occultation excess phases and amplitudes – one file per GPS occultation | level 1b ionPhs | - time
- SNRs
- Rx & Tx pos.
- Rx & Tx vel.
- excess phases | temporal: 1 sec | NetCDF | ≲ 145 min |
| Ionospheric occultation profiles from orbit altitude and down – one file per GPS occultation | level 2 ionPrf | - time
- lat., lon.
- tangent altitude
- occ. TEC
- electron dens. | vertical: 2-3 km | NetCDF | ≲ 145 min |
| Raw TIP (Tiny Ionospheric Photometer) nadir radiance data – one file per COSMIC satellite per dump | level 1a tipBin | - time
- counts
- radiances
- Rx position
- surface lat., lon. | temporal: seconds | TIP native binary | ≲ 115 min |
| Radiances from the TIP – one file per COSMIC satellite per dump | level 1b tipLv1 | - time
- counts
- radiances
- Rx position
- surface lat., lon. | temporal: seconds | NetCDF | ≲ 115 min |
Summary and Instrument Status

• Three instruments on board each COSMIC satellite will provide ionospheric data:
 – GPS receiver: TEC, electron density profiles, and scintillations
 – TIP: Nadir intensity from radiative recombination emission along the sub-satellite track
 – TBB: TEC and scintillations on satellite-to-ground links

• COSMIC is in early check-out phase
 – All GPS receivers working; SNRs looking good; about 50 ionospheric profiles acquired so far
 – S/C attitude is currently not optimal; limits initial GPS data collection and data processing
 – Attitude expected to stabilize in a few days when solar arrays are switched to slow speed mode
 – TIP instruments performing well, but apertures not opened yet
 – TBB transmitters not yet turned on

• We anticipate that COSMIC will provide an unprecedented large amount of ionospheric data useful for data assimilation into space weather models and ionospheric research in general
Prospects for COSMIC II

• The expected lifetime of COSMIC is about five years
• COSMIC’s latency is not optimal for space weather forecasting
• UCAR has been discussing with NOAA about a possible COSMIC follow-on mission (COSMIC II)
• This would provide the opportunity to design a system that would better support the space weather community needs
• It would be good to receive input from the community with regard to the requirements for such a follow-on mission