Introduction to GPS Radio Occultation

Stig Syndergaard

COSMIC Project Office
University Corporation for Atmospheric Research

Topics of lecture

The basics

• The GPS radio occultation principle
• GPS observations (what is the signal?)
• Derived products (what comes out of it?)

Inversion of GPS radio occultation data

• From signal to products (next slide)

Advanced topics

• Atmospheric multipath propagation
• Super refraction
Inversion of GPS radio occultation data

- Excess phase \rightarrow excess Doppler
- Excess Doppler \rightarrow bending angle
 - Correction for Earth’s oblateness
 - Ionospheric correction
 - Statistical optimization
- Bending angle \rightarrow refractivity
 - The Abel transform (the core of the data inversion)
- Refractivity \rightarrow pressure, temperature & humidity

Ionospheric data

- Phase differential \rightarrow total electron content (TEC)
- Total electron content \rightarrow electron density
The GPS radio occultation principle

GPS = Global Positioning System
LEO = Low Earth Orbiter
α = Bending angle (max $\sim 2^\circ$)

Signal frequencies: $f_1 = 1.57542$ GHz & $f_2 = 1.22760$ GHz

Refractive index of medium: $n \approx 1 + 77.6 \cdot \frac{p}{T} + 3.73 \times 10^5 \cdot \frac{e}{T^2} + 40.3 \cdot \frac{N_e}{f^2}$
Basic GPS occultation observations

a) The Doppler depends on Φ and \vec{v}

b) With bending, the Doppler is different than expected from velocities only

Basic measurement is a phase path (meters): $L = \int_{GPS}^{LEO} n \, ds$

Excess phase (path) is defined as: $\Delta L = L - |\vec{r}_{LEO} - \vec{r}_{GPS}|$

We are interested in the phase change: excess Doppler $= \frac{d\Delta L}{dt}$
The bending effect

Curved signal path through the atmosphere

- The signal path is curved according to Snell’s law because of changes in the index of refraction along the path.

- In a spherically symmetric medium, Snell’s law is replaced by Bouger’s law:

\[nr \sin \psi = a = \text{constant} \]
Bouger’s law leads to (e.g., Fjeldbo et al. 1971):

\[\alpha(a) = -2a \int_{r_0}^{\infty} \frac{d \ln n/dr}{\sqrt{n^2 r^2 - a^2}} dr \]

where bending toward the Earth is counted positive and \(r_0 \) is the radius at the tangent point: \(n(r_0)r_0 = a \)
Derived data products

Basic assumption: local spherical symmetry

- Bending angle as a function of impact parameter, α (ray asymptote)
 - Numerical weather prediction & Climate research
- Refractivity (defined as $N = (n - 1) \times 10^6$) as a function of altitude
 - Numerical weather prediction & Climate research
- Temperature, pressure (geopotential height), and humidity profiles
 - Atmospheric & Climate research

Ionospheric data

- Total electron content between GPS and LEO
 - Input to space weather models
- Electron density as a function of altitude
 - Ionospheric research
Data product characteristics

Accuracy of derived refractivity

- Mean accuracy less than 0.5% between 2 and 25 km
- Standard deviation less than 1% between 5 and 25 km
- In the troposphere: Accuracy limited by horizontal gradients
- Above ~ 30 km: accuracy limited by thermal and ionospheric noise
- Below ~ 2 km: tracking errors may dominate

Vertical resolution

- ~ 100 m in lower troposphere, increasing to ~ 1.5 km in stratosphere

Ionospheric data

- Accuracy of electron density profiles limited by horizontal gradients
- Vertical resolution determined by sampling rate (~ 2 km for 1 Hz data)
Data processing chain

- L1 and L2 phase and amplitude
- Radio holographic methods, multipath
- Satellite orbits & Spherical symmetry
 - L1 and L2 bending angle
 - Iono-free bending angle
- L1 and L2 phase
- Ionospheric correction
- Single path
 - High altitude climatology & Abel inversion
 - Iono-free bending angle
- Refractivity
- Auxiliary meteorological data
 - T, e, p
• An occultation typically lasts about 1 minute (sometimes more)
• The excess phase can become as large as a few km near the surface

\[
\Delta L_C(t) = \frac{f_1^2 \Delta L_1(t) - f_2^2 \Delta L_2(t)}{f_1^2 - f_2^2} = L_C(t) - |\vec{r}_{GPS} - \vec{r}_{LEO}|
\]
Excess phase — what does it look like?

- An occultation typically lasts about 1 minute (sometimes more)
- The excess phase can become as large as a few km near the surface

\[
\Delta L_C(t) = \left(\frac{f_2^2}{f_1^2} \Delta L_1(t) - \frac{f_2^2}{f_2^2} \Delta L_2(t) \right) = L_C(t) - \left| \vec{r}_{GPS} - \vec{r}_{LEO} \right|
\]
Excess Doppler — what does it look like?

\[
\Delta D = \frac{d\Delta L}{dt}
\]

Usually smoothing (low pass filtering) is applied to the excess phase before the excess Doppler is derived (not in this plot, though).

- L2 signal is affected by Anti-Spoofing (encryption of the P-code) which leads to a low signal-to-noise ratio, in turn leading to tracking errors in the lower troposphere (L2 not used in lower troposphere)
Excess Doppler \rightarrow bending angle

- Having satellite positions & velocities (from precise orbit determination)
- Having the excess Doppler (from observations)
- Assuming spherical symmetry then determines the impact parameter, a, and subsequently the bending angle, α
Excess Doppler \rightarrow bending angle

$$\Delta D(t) \rightarrow \Delta D + \dot{R}_{LG} - \left(|\dot{R}_L| \cos \varphi(a) - |\dot{R}_G| \cos \chi(a) \right) = 0$$

$$\varphi(a) = \zeta - \arcsin \left(\frac{a}{|R_L|} \right)$$

$$\chi(a) = (\pi - \eta) - \arcsin \left(\frac{a}{|R_G|} \right)$$

$$\alpha = \Theta - \arccos \left(\frac{a}{|R_L|} \right) - \arccos \left(\frac{a}{|R_G|} \right)$$

(e.g., Melbourne et al. 1994)

- Bending angle derived from Doppler is used in the stratosphere and perhaps upper troposphere, but not in the lower troposphere.
- In the moist lower troposphere, multipath propagation may be present, and more advanced methods has to be used to derive the bending angle (more about this later).
Correction for Earth’s oblateness

• The Earth is slightly oblate (elliptical) such that the center of curvature does not match the center of the Earth in general.

• The center of curvature varies with position on the Earth and the orientation of the occultation plane.

\[\alpha \text{ and } a \text{ are estimated with respect to the center of a circle in the occultation plane that best fits the ellipsoid near the tangent point.} \]

(Syndergaard 1998)
Ionospheric correction of bending angles

Consider approximate equations for the L1 and L2 bending angles:

$$\alpha_i(a) \approx -2a \int_a^{\infty} \frac{d}{dx} \left(10^{-6} N_n - \frac{40.3}{f_i^2} N_e \right) \frac{dx}{\sqrt{x^2 - a^2}}$$

The ionosphere-free bending angle is formed from the derived bending angles at the same impact parameter (Vorob’ev and Krasil’nikova 1994):

$$\alpha(a) = \frac{f_1^2 \alpha_1(a) - f_2^2 \alpha_2(a)}{f_1^2 - f_2^2} \approx -2a \int_a^{\infty} 10^{-6} \frac{(dN_n/dx)dx}{\sqrt{x^2 - a^2}}$$

- Ionospheric correction of phases assumes that the L1 and L2 signal paths are identical (but the ionosphere is dispersive)

- Ionospheric correction of bending angles at equal impact parameters ensures that the involved L1 and L2 signal paths are close to each other near the tangent point (and that is an advantage)
Formally, we need bending angles to infinite altitudes in order to derive the refractivity (of course we don’t have that).

Bending angles are contaminated with thermal noise and residual noise from ionospheric turbulence.

Fractionally the noise increases exponentially with altitude rendering the bending angle useless at some altitude and above.

"Optimal" estimation of bending angle:

$$\tilde{\alpha}(a) = \alpha_{\text{model}}(a) + \frac{\sigma_{\text{model}}^2}{\sigma_{\text{model}}^2 + \sigma_{\text{obs}}^2} [\alpha(a) - \alpha_{\text{model}}(a)]$$

α_{model} is estimated from a climatological model.
σ_{obs} may be evaluated from the data above the stratosphere.
σ_{model} is usually set to a fixed number (20%).
Bending angle — what does it look like?

- Bending is significant only below ~ 25 km (but still important above)
- The bending angle may be as large as 0.035 rad (2°) near the surface
- In the lower troposphere, moisture variations causes large fluctuations in the bending angle (multipath propagation, which I will get to shortly)
Bending is appreciable only below ~ 25 km (but still important above)

- The bending angle may be as large as 0.035 rad (2°) near the surface

- In the lower troposphere, moisture variations causes large fluctuations in the bending angle (multipath propagation, which I will get to shortly)
Bending angle \rightarrow refractivity

$\alpha(a)$

Abel integral transform (e.g., Fjeldbo 1971)

$$
\alpha(a) = -2a \int_{r_0}^{\infty} \frac{d \ln n/dr}{\sqrt{n^2 r^2 - a^2}} dr \quad \Leftrightarrow \quad n(r_0) = \exp \left(\frac{1}{\pi} \int_{a}^{\infty} \frac{\alpha(x)}{\sqrt{x^2 - a^2}} dx \right)
$$

$$
r_0 = \frac{a}{n(r_0)} \quad , \quad N(r_0) = 10^6 \times (n(r_0) - 1)
$$

\downarrow

$N(r)$

- The Abel integral transform relies on the assumption of spherical symmetry
- It provides a simple and unique solution to an otherwise under-determined inverse problem
- In practice the integration is performed to some high altitude where the bending angle can be neglected (above 100 km)
• The *inverse* Abel integral (going from bending angle to refractivity) acts as a low pass filter, somewhat similar to the operator of a half integration

• Possibly the product that will be assimilated at most NWP centers in the near future
Refractivity equation:

\[N \approx 77.6 \frac{p}{T} + 3.73 \times 10^5 \frac{e}{T^2} \]

- Two terms: a dry (or hydrostatic) term and a wet term
- The wet term can be neglected at temperatures less than \(\sim 240 \text{ K} \) (i.e., at few kilometers above the surface at high latitudes and above \(\sim 10 \text{ km} \) at tropical latitudes)

Neglecting the wet term:

\[N(r) \rightarrow \]

\[N = 77.6 \frac{p}{T}, \quad p = \rho R_d T \]

\[\frac{dp}{dz} = -\rho g, \quad z = r - r_{\text{curv}} \]

\[\rightarrow p(z), T(z) \]
• The temperature derived by neglecting water vapor is called the "dry temperature"

• The dry temperature significantly underestimates the actual temperature in the lower moist troposphere
Two common ways of deriving water vapor:

1. include additional information about the actual temperature profile and solve directly for water vapor (iterative procedure)

2. One-dimensional variational technique optimally combining the refractivity profile with information from an NWP model

Method number 1:

\[
N(z), T_{\text{apriori}}(z) \downarrow
\]

\[
e = T^2 \frac{N - 77.6(p_d + e)/T}{3.73 \times 10^5} \quad \text{,} \quad \frac{d(p_d + e)}{dz} = - (\rho_d + \rho_w)g
\]

\[
p_d = \rho_d R_d T \quad \text{,} \quad e = \rho_w R_w T
\]

\[
\downarrow
\]

\[
e(z), p_d(z)
\]
Deriving water vapor pressure

Method number 2 (variational retrieval):

- Include information about errors in a priori temperature, pressure and water vapor, as well as errors in the observed refractivity,

\[N(z), T_{\text{apriori}}(z), p_{\text{apriori}}(z), e_{\text{apriori}}(z) \]

Minimizing the following cost function:

\[
J(x) = (x - x_b)^T B^{-1} (x - x_b) + (N_{\text{obs}} - N(x))^T R^{-1} (N_{\text{obs}} - N(x))
\]

\(x \) is the state vector to be solved for

\(x_b \) is the a priori state vector

\(N(x) \) is the refractivity equation

\(B \) is the a priori error covariance matrix

\(R \) is the observation + representativeness error covariance matrix

\[T(z), p(z), e(z) \]
• The two methods result in almost the same water vapor profiles

• 1DVar retrieval is presumably the most accurate, since it includes most information, but the very high vertical resolution is lost
A few words about ionospheric data

- Bending throughout (most of) the ionosphere can be ignored

Definition of total electron content:
$$\text{TEC} = 10^{-16} \int_{\text{GPS}}^{\text{LEO}} N_e \, ds$$

Our observations:
$$L_i = \int_{\text{GPS}}^{\text{LEO}} \left(10^{-6} N_n - \frac{40.3}{f_i^2} N_e \right) ds$$

- \(L_1(t), L_2(t) \)

\[\text{TEC} = \frac{L_1 - L_2}{40.3 \times 10^{16}} \frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \]

\[\downarrow \]

- \(\text{TEC}(r) \)

\[N_e(r_0) = \frac{10^{16}}{\pi} \int_{r_0}^{r_{\text{LEO}}} \frac{\text{dTEC}/dr}{\sqrt{r^2 - r_0^2}} \, dr \]

\[\downarrow \]

- \(N_e(r) \)

- \(\text{dTEC}/dr \) is proportional to the bending angle
Ionospheric profiles — what do they look like?

- TEC calibrated with positive elevation angle data (Schreiner et al. 1999)
- Retrieval of N_e is based on the assumption of spherical symmetry
- The spherical symmetry assumption may result in large under-estimation or over-estimation of electron density in the lower part of profiles
ADVANCED TOPICS

- Atmospheric multipath propagation
- Super refraction
Multipath propagation

Atmospheric multipath propagation refers to the situation where there are more than one signal path (Fermat’s principle) between the transmitter (GPS) and the receiver (LEO).

- Multipath propagation is a result of sharp vertical refractivity gradients varying rapidly with height (due to the water vapor term).
- Multipath propagation can be expected in the lower troposphere in regions with large amounts of water vapor.

(Gorbunov 2002)
Multipath propagation

(Beyerle et al. 2003)

- Multipath propagation results in interference in the phase measurements.
- We need to disentangle the multipath because the Abel transform is based on the assumption of single ray propagation.
- Radio-holographic methods basically transform the measured signal from geometrical space to impact parameter space where multipath is absent.
• Both phase and amplitude is used in radio-holographic methods

\[A \exp(ik\Delta L_1) \rightarrow \alpha_1(a) \]
• Both phase and amplitude is used in radio-holographic methods

\[A \exp(ik\Delta L_1) \rightarrow \alpha_1(a) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back propagation</td>
<td>Gorbunov 1998</td>
</tr>
<tr>
<td>Sliding spectrum</td>
<td>Sokolovskiy 2001</td>
</tr>
<tr>
<td>Canonical transform</td>
<td>Gorbunov 2002</td>
</tr>
<tr>
<td>Full spectrum inversion</td>
<td>Jensen et al. 2003</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>
• Deriving the bending angle in the lower troposphere using Doppler may result in multivalued bending angle as a function of impact parameter

• Different radio-holographic methods give almost the same answer, but Full Spectrum Inversion (FSI) is at present the most commonly used
Super refraction refers to the situation when the bending becomes so large (locally) that the curvature of a ray exceeds the curvature of the atmosphere.

Critical refraction point:
\[\frac{dN}{dr} \approx -157 \text{ N-units/km} \]

Super refraction:
\[\frac{dN}{dr} < -157 \text{ N-units/km} \]

Ducting layer in this figure:
Between 1.5 and 2 km

- No ray path connecting satellites can exist with a tangent point altitude within a layer just below the critical refraction point.
- A signal launched horizontally within this layer will be trapped or ducted.
Super refraction

- Super refraction may happen near the top of the moist marine boundary layer.
- Bending angle theoretically goes to infinity at the critical refraction point.
- Applying the Abel transform gives a negative refractivity bias below the critical refraction point.
- There is in fact an infinite number of different refractivity profiles corresponding to identical bending angle profiles.
- Super refraction is largely an unsolved problem for GPS radio occultation.
 - Super refraction is not easy to detect in the data (poses a problem for NWP).
 - We do not really know how to handle it properly even if we could detect it.

(Sokolovskiy 2003)

