Observing the upper troposphere and lower stratosphere with GPS radio occultation data: Results from CHAMP, GRACE, and COSMIC

T. Schmidt, J. Wickert, S. Heise, G. Beyerle, A. Haser
GFZ German Research Centre for Geosciences, Potsdam, Germany

A. de la Torre, P. Alexander
Departamento de Física, FCEN, Universidad de Buenos Aires, Argentina

The CHAMP and GRACE team (GFZ)
The COSMIC team (UCAR)
Overview

• GPS RO data base

Applications

• Variability of the UTLS: tropopause, temperatures and bending angles
• Gravity wave activity in the UTLS
• Tropopause inversion layer
• Summary
Data base

CHAMP: 2001.05-2008.09
GRACE: since 2006.01

COSMIC: since 2006.04 (6 satellites)

\[\Delta \phi = 10° \]
about 150/300 profiles/day

\[\Delta \phi = 5° \]
about 2,500 profiles/day

COSMIC workshop, Boulder, Oct. 27-29, 2009
Applications

Climate
Are the ROs benchmark data for climate monitoring/change?

Link between tropospheric/LS warming/cooling and tropopause height

Recent trend studies with GPS RO data

Schmidt et al., GRL, 2008:
Global LRT height increase of ~7m/yr from CHAMP temperatures (2001-2007)

Ho et al., JGR, 2009:
Trend study of CHAMP refractivity (2002-2006) from different centers

Steiner et al., GRL, 2009:
Temperature trend study for February/November months with GPS/MET (1995, 1997) and CHAMP (2002-2008)

Is this visible in the RO data?
Climate monitoring based on T, N or α?

Advantages of bending angles:

- less sensitive to uncertainties related to data processing than refractivity or dry temperature
- avoid inclusion of *a priori* information in the Abel transform, hydrostatic equilibrium and *a priori* pressure or temperature in the hydrostatic integration to derive the dry temperature

Demonstrations:

Healy and Thepaut, QJRMS, 2006 (weather)

Ringer and Healy, GRL, 2008 (climate)

Lewis (GRL, 2009) introduced a new method for the tropopause identification using $\text{ln}(\alpha)$ profiles
Tropopause height and bending angles

LRT algorithm
(Reichler et al., 2003)

α (BA) based algorithm
(Lewis, 2009)

Basis: CHAMP/GRACE May 2001-August 2009

COSMIC workshop, Boulder, Oct. 27-29, 2009
Tropopause height variability

\[y(t) = \text{const} + \alpha \cdot t + \beta \cdot QBO(t) + \gamma \cdot ENSO(t) \]
Tropopause height variability

COSMIC workshop, Boulder, Oct. 27-29, 2009
Bending angles and temperature trends

Basis: CHAMP/GRACE May 2001-August 2009

COSMIC workshop, Boulder, Oct. 27-29, 2009
Gravity waves
Gravity wave analysis

\[T'(z) = T(z) - \overline{T}(z) \]

\[\overline{T'}^2(z) = \frac{1}{z_2 - z_1} \int_{z_1}^{z_2} T'^2(z) \, dz \]

\[N^2(z) = \frac{g}{\overline{T}} \left(\frac{\partial \overline{T}}{\partial z} + \frac{g}{c_p} \right) \]

\[E_p(z) = \frac{1}{2} \cdot \frac{g^2}{N^2} \cdot \left(\frac{T'}{\overline{T}} \right)^2 \]
Lower stratospheric GW climatologies

CHAMP/GRACE
May 2001-Aug. 2009
$\Delta \phi = 5^\circ$
on-overlapping bins

COSMIC
$\Delta \phi = 5^\circ$
non-overlapping bins
Lower stratospheric GW climatologies

CHAMP/GRACE
May 2001-Aug. 2009
$\Delta \phi = 5^\circ$

COSMIC workshop, Boulder, Oct. 27-29, 2009
GW analysis in the tropopause region

(from Schmidt et al., GRL, 2008)
GW analysis in the tropopause region

Basis: CHAMP/GRACE May 2001-August 2009

(update from Schmidt et al., GRL, 2008)
Tropopause inversion layer
Tropopause inversion layer (1)
Tropopause inversion layer (2)

CHAMP/GRACE 2001.05-2009.08
\(\Delta \phi = 5^\circ \)
overlapping bins
Summary

- RO technique is a suitable tool for monitoring the UTLS
- TPHs directly from bending angles (Lewis, 2009)
- Tropopause height trends with different data sets and methods
 - increase of about 5-9 m/year
 - good agreement with radiosonde data (25 years)
- Variability of the UTLS with BAs
 - advantages
- Improving of methods for gravity wave analysis with RO (detailed error characteristics is very important)
- TIL as a feature of the extratropics