Daytime Climatology of Ionospheric NmF2 and hmF2 from COSMIC data

A. G. Burns1, S. C. Solomon1, W. Wang1, L. Qian1, Y. Zhang2, and L. J. Paxton2

1High Altitude Observatory, National Center for Atmospheric Research, Boulder CO 80307-3000.
2Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland.

Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) data were analyzed to study the climatological variations of the F_2 region ionosphere. A 30 day running median was applied to the daily medians of each geomagnetic latitude bin (10°) to remove the short term variability of the data. This permitted a better description of the long term daytime climatology across the most recent solar minimum to be obtained. Several significant features appeared in this climatology: 1) low-latitude N_mF_2 was dominated by the semi-annual anomaly, the equatorial anomaly and the annual asymmetry (anomaly); 2) Semi-annual and annual anomalies extended into the middle latitudes; 3) this extension into the middle latitudes appears to be dependent on variations of solar radiation over the solar cycle, as the variations did not reach as far poleward in 2008 as they did in 2010; 4) The second equinoctial maximum is not centered on the September equinox, but occurred in October; 5) there is an annual variation at high latitudes in which maximum values of N_mF_2 occur in summer – there is no indication of a winter anomaly and, in fact, when hemispheres are compared, maximum N_mF_2 at mid latitudes always occurs in the summer hemisphere rather than the winter one; 6) the highest values of h_mF_2 at low latitudes occur on the summer side of the magnetic equator throughout the four year period, probably resulting from winds blowing from the summer to the winter.