COSMIC/ FORMOSAT-3 observations of influence of different phases of QBO over temperature in the tropopause region: Focus on the tropical dynamics

S. K. Dhaka1, V. Kumar1, Shu-Peng Ho2, R. K. Choudhary3, M. Takahashi4, and S. Yoden5

1. Radio and Atmospheric Physics Lab., Rajdhani College, University of Delhi, India
2. COSMIC Program Office, University Corporation for Atmospheric Research, Boulder, Colorado, USA
3. Space Physics Laboratory, VSSC, Trivandrum, India
4. AORI, University of Tokyo, Japan
5. Department of Geophysics, Kyoto University, Japan

The effect of QBO on temperature of cold point tropopause (T-CPT) and its height (H-CPT) is being investigated using radio occultation measurements by COSMIC/FORMASAT-3 over a period of 2007-2013. In general, T-CPT is found to be the coldest in February and warmest in August. H-CPT also shows a maximum between December and February and minimum during July -August in both the hemispheres. Interestingly, however, the H-CPT shows off-equatorial maxima (around and beyond 20°N or 20°S) during all the seasons. The H-CPT at off-equatorial region remains higher during Northern Hemisphere (NH) winter as compared to monsoon season. Inter-seasonal variation in T-CPT and H-CPT is found to be clearly influenced by QBO wherein the westerly (easterly) phase favors warm (cool) T-CPT with a decrease (increase) in H-CPT. It is concluded that QBO induces the changes in T-CPT by as much as 2°C and in H-CPT by 0.5 km. Unique features of the influence of QBO phases over different longitude sectors are also discussed. Warm and cool anomalies as a consequence of different phases of QBO prevail in a localized manner that eventually can influence the water vapor budget especially over Indian-Indonesian sectors. COSMIC mission has clarified such findings and enabled us to look beyond from the climatic change point of view towards deep understanding of the atmospheric dynamics itself.