Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements

Xin’an Yue, W. S. Schreiner, Jason Lin, C. Rocken, Y-H. Kuo

COSMIC Program Office, University Corporation for Atmospheric Research, Boulder CO, USA
Motivation
Assimilation method
Results and Validation
Conclusion
Two Abel retrieval methods to derive electron density profiles from RO measurements:
1. Bending angle
2. TEC along the GPS ray

Current CDAAC electron density retrieval: TEC based Abel retrieval, several assumptions are used:
1. Linear relationship between refractivity and electron density
2. Straight-line signal propagation
3. Circular satellite orbit
4. First-order estimate of electron density at the top
5. Spherical symmetry of electron density
Abel Retrieval Error

110 km

220 km

COSMIC Abel retrieval from NeQuick model

Unit: $1 \times 10^{11}/m^3$
Assimilation method and parameter choice

\[x_t^a = x_t^b + K(y_t - Hx_t^b), \]
\[K = P_t^b H^T (HP_t^b H^T + R)^{-1}, \]
\[P_t^a = P_t^b - P_t^b H^T (HP_t^b H^T + R)^{-1} HP_t^b \]

\(\Box \) \(P_{ij} = r_1 x_i^b x_j^b e^{-d_{ij}/L} \quad r_1 = 0.01 \)
\(\Box \) \(R_{ij} = r_2 y^2 \delta_{ij} \quad r_2 = 0.001 \)
- **Grid division**
 - Latitude: 2.5 degree; Longitude: 5 degree; Altitude: 2.5 km
 - For one occultation event, there are ~6000 grid points that GPS rays pass through
Ionospheric Correlation Length

- **Factor** vs. **Local Time**
- **Meridional Correlation (°)** vs. **Latitude (°)**
- **Zonal Correlation (°)** vs. **Latitude (°)**
- **Vertical Correlation (km)** vs. **Altitude (km)**
Step 1: Retrieval Real Data

1: Abel Retrieval (Spherical Symmetry)
 Background Model: IRI
 Input: Real F107

2: Data Assimilation (DA) Retrieval
 Background Model: IRI
 Input: Real F107

Step 2: Simulation

1: Simulate the Occultation side slant TEC by NeQuick Model (input real F107)
2: Abel retrieval simulated sTEC
3: Data assimilation Retrieval the simulated sTEC
 and obtain the EDP along the tangent point

<table>
<thead>
<tr>
<th></th>
<th>Background</th>
<th>F107</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA1</td>
<td>NeQuick</td>
<td>real</td>
</tr>
<tr>
<td>DA2</td>
<td>IRI</td>
<td>real</td>
</tr>
<tr>
<td>DA3</td>
<td>IRI</td>
<td>Real+40</td>
</tr>
</tbody>
</table>
Occultation event distribution during the selected day (2009.266). Also shown is the co-located Ionosondes and profile number (22 stations, 72 profiles in total)
Results 1:

An example of DA retrieval of simulated TEC by three different backgrounds.
Results 2:

✓ Comparison of NmF2 & hmF2 of 3 DA retrievals from simulated TEC
Comparison of all Ne and error statistical of Abel retrieval and DA2 retrieval from simulated TEC
Validation 1: Comparison of EDP retrieved by Abel and DA method between two co-located cases in the same time.

data assimilation retrieval is less influenced than Abel method by the ionospheric inhomogeneity.
Validation 2: (Simulation)

- Comparison of the latitude and altitude Ne and its retrieval error from simulation
- LT=13
- Manmade plasma cave disappears in DA retrieval.
Comparison of Ne retrieved from real data by Abel and DA

LT=13
Validation 3: (Simulation)

Comparison of Ne and its error from simulation
Cont. (real data)

✓ LT-MLat variation of Ne from real data
Validation4: (With Ionosonde)

✓ An example of retrieved EDPs in comparison with co-located Ionosonde EDP
Statistical comparison with co-located Ionosonde data (below hmF2 Ne)

a)

Abel Retrieved Ne (10^6 cm^-3)

Ionosonde Ne (10^5 cm^-3)

N = 1526

r = 0.91

RMSE = 0.58

b)

DA Retrieved Ne (10^6 cm^-3)

Ionosonde Ne (10^5 cm^-3)

N = 1526

r = 0.94

RMSE = 0.45

c)

d)

Histogram of dNe(Abel Retrieved-Ionosonde(10^5 cm^-3))

Histogram of dNe(DA Retrieved-Ionosonde(10^5 cm^-3))
Conclusion:

✓ Data assimilation Retrieval has a better performance than Abel retrieval from simulation study.

✓ DA method can improve the retrieval especially around and below F2 peak region.

✓ The climate features such as manmade plasma cave (also call 3 E layer peaks) are improved by Data assimilation retrieval.

✓ Comparison with Ionosonde data confirms the validation of DA retrieval method.