First Results from the Processing of GRAS Raw Sampling Data

C. Marquardt, Y. Andres, A. von Engeln, F. Sancho

with many thanks to M. Bonnedal, J. Christensen (both RUAG), and A.S. Jensen

COSMIC Workshop Oct 2009
Boulder, USA
GRAS Measurement modes

Examples of raw RS data

Initial (bending angle) retrievals

An issue with GRAS: Closed loop data gaps not covered by raw sampling (yet)

Summary and outlook
GRAS measurement Modes

- **Dual Frequency Carrier Tracking:** code and carrier for L1 and L2 are tracked; both (+ C/A) are reported @ 50 Hz

- **Single Frequency Carrier Tracking:** C/A code and carrier phase are tracked; C/A code and carrier are reported @ 50 Hz

- **Single Frequency Raw Sampling:** C/A code tracked, 1 kHz sampling of carrier

- SF carrier tracking and raw sampling can occur simultaneously

- Either L2 or RS

- GRAS uses a geometrical doppler model (p vs SLTA) when in raw sampling:
 - Implemented as lookup table in the receiver (~ 10 Hz)
 - Transparent to the user / in the measurement reconstruction

- Tracking state information available
Settable parameters:
with default values given in SLTA
(and RTH)

Rising:
- **SLTA_V** = -140 km
 (start C/A acquisition)
- **SLTA_L2** = -35 km
 (start L2 acquisition)
- **SLTA_A** = 0 km
 (delay L2 acquisition)

Setting:
- **SLTA_AV** = -140 km
 (release SV)

 (courtesy Saab)

* This altitude is settable
GRAS Measurement Modes (Setting)

- C/A SF I’s and Q’s
- Dual branches due to navigation message (is usually removed via sign(I))
GRAS Measurement Modes (Rising, cont’d)

Channel 08

Time since 2007/09/06 00:00:00 (UTC)

C/A 1
C/A Q
R/S 1
R/S Q

Time since 2007/09/06 00:00:00 (UTC)

DF
SF
RS
Navigation Bit Removal

Uncorrected

Corrected

3 sec

COSMIC Workshop 2009
Boulder, USA
Slide: 7
Navigation Bit Removal (cont’d)

- Currently using navigation bit archives from UCAR and GFZ (Thanks!!!)
- Considering implementation of an operational bitgrabber network for future operations (and at least the next 10+ years)

- Currently working on Q/C, data format specifications, prototype implementation, internal removal algorithms,…
Closed Loop vs. Raw Sampling Consistency

The diagram shows graphs comparing the performance of different sampling techniques over time. The x-axis represents time, with specific timestamps marked. The y-axis represents relative carrier amplitude (V @ 50 Ohm). Different lines represent L1, L2, and C/A signals, with each showing variations and consistency issues over the recorded period.
Co-channel Interference

- Other GPS SVs visible in the antenna beam appear in the spectrum...

- ...as CA code orthogonality is not perfect (25 – 30 dB only)

- Observed doppler offsets are consistent with actual GPS ephemeris
Measured Doppler vs. Model

Onboard doppler model

Enhanced doppler model

(analysis and figures courtesy RUAG)
Bending Angle Example - High Latitudes

- Note: impact parameter altitudes are ~ 3 km at the surface
- FSI @ 1kHz, CL upsampled
- Arne Jensen helped us a lot!
- We’re just learning how to do it (i.e., it’s preliminary)
- Note: impact parameter altitudes are ~ 3 km at the surface
- FSI @ 1kHz, CL upsampled
- Arne Jensen helped us a lot!
- We’re just learning how to do it (i.e., it’s preliminary)
In rising occultations:

- Receiver must abandon RS tracking before it can start to look for L2 / DF carrier tracking.
- If signal dynamics is strong, GRAS may lose DF (and sometimes even C/A) carrier tracking after having terminated RS.
- Data gaps in C/A cannot be filled as RS was already abandoned.
Closed Loop Data Gaps in Rising Occ’s (cont’d)

Tracking States (Velocity Antenna / Rising Occultations)

Signal-to-Noise Ratio

9°N, 120°E
Closed Loop Data Gaps in Rising Occ’s (cont’d)

9°N, 120°E

28°N, 155°E

37°N, 147°E
Closed Loop Data Gaps in Rising Occ’s (cont’d)

- SLTA of highest gap in C/A carrier phase data (October 2007)
- About 33% of rising occultations are affected
- ...big problem!
Closed Loop Data Gaps in Rising Occ’s (cont’d)

- Large fraction of rising occultations affected (33 %)
- Can we adapt our algorithms to deal with these gaps (at least in historic data)?

- Mitigation:
 - Raise SLTA_L2 from -35 km (currently) to -10 … 0 km
 - Comes at the cost of loosing L2 data in tropospheric rising occultations
 - If ionospheric correction turns out to be problem:
 - considering to change GRAS S/W to re-enable RS data if data gaps occur (just as for setting occultation)

- SLTA raise (for testing) planned for later, possibly during in-plane maneouvre on Dec 10th
Summary

- **GRAS measurement modes**
 - closed loop (50 Hz, PLL plus I/Qs, so similar to open loop as long as PLL doesn’t fail completely)
 - raw sampling (1kHz, geometrical doppler model)
 - excellent consistency between closed loop and raw sampling data
 - high sensitivity (even cross channel correlations visible in the raw sampling data)
 - first retrieval results look promising, but we have some way to go yet
 - test data (including bending angles) widely available in a few weeks

- **Closed Loop Data Gaps in Rising Occultations**
 - significant fraction (33%) of rising occultations affected
 - SLTA’s of gaps latitude dependent, highest gaps in the tropics (up to -10 km, corresponding to tropical tropopause altitudes)

- **Other (minor) issues**
 - Occasional cross tracking in early rising RS data (means no data for proper measurements)
 - Occasional amplitude saturation events in RS under moderately high SNR conditions