Coordinate Study of the Ionospheric Stratification at Low Latitude: Results from the COSMIC and GIRO

Biqiang Zhao, Weixin Wan, Jie Zhu

Institute of Geology and Geophysics
the Chinese Academy of Sciences Beijing, P. R. China
zbqjz@mail.iggcas.ac.cn

Sixth FORMOSAT-3/COSMIC Data Users' Workshop
Outline

- **Background** of the ionospheric stratification
- **Data** and method description
- **Features** obtained from the COSMIC and GIRO
- **Explanation** for the observed features
Introduction

Early observations: 1950s ground ionosonde

- Sen, 1949, JGR;
- Ratcliffe, 1951, JGR;
- Bailey, 1949

“Spur”

D, E, F and
“G-layer”
1995-1997, Balan renamed "G-layer" to "F3-layer"

What has been achieved for the ionospheric F3 layer feature? Most probably appears at

Where
within magnetic ±10°

Local time
morning-noon (09-12LT)

Season
Summer hemisphere

Solar activity
Low solar activity

Magnetic activity
Strong magnetic storms

Limitation: ionosonde station ≠ Global distribution?
2. COSMIC electron density profile (EDP)

3 millions! EDP (2006.111-2012.240)

COSMIC: 6 satellites, ~800 km, 72° inclination, ~2000 profiles of electron density and neutral temperature/day.
F3 layer occurrence rate

\[\text{Prob (DoY, LT, Mlat, Lon)} = \frac{\text{Count}}{\text{Total}} \]

totally \(\sim 720,000 \) EDPs within ±30° magnetic latitude
Data selection criterion

Step 1: EDP quality control

a. $185 < max_alt < 460$;

b. $MD = \frac{\sum_{i=1}^{N} |(x_i - \bar{x})/\bar{x}|}{N} < 3\%$ (all) and 1.5\%(bottom);

- Remove the Physical abnormality in EDP

Step 2: Track control

- $Track_lat < 3^\circ$
- $Track_lon < 15^\circ$
- $Track_angle < 45^\circ$

- Remove the False stratification due to Latitude horizontal gradient of Ne

Lei et al. 2007 JGR
2. Data selection criterion

Step 3: F3 layer judgment

Double Peaks in the differential EDP (dNe/dh)

Comparison between the EDP and ionosonde Profile

COSMIC EDP Kwajalein ionosonde
COSMIC EDP

Tangent point trajectory

6 examples
Global feature of the F3 layer Occurrence

- **Latitude dependence**
 1. Peaks at ±7 - 8° dip latitude (10-12%)
 2. Occurrence Southern hemisphere more than Northern one
Global feature of the F3 layer Occurrence

- **Longitude dependence**
 Seems to be correlated with wavenumber 4 (WN4) in May-August

Equatorial Daytime upward drift
From **ROCSAT-1**

- May-Aug
- Nov-Feb
Global feature of the F3 layer Occurrence

- **Local time dependence**
 1. Main Peak at 10-12 LT
 2. Second Peak at post-sunset period 20 LT (seldom reported)
2. Post-sunset F3 layer (19-22LT)

Mainly at equatorial area (-5 ~ 5°)
Relatively higher at South America and Africa
There are more cases in -75°E than -45°E? Real? ground?
 GIRO observation

<table>
<thead>
<tr>
<th>Station</th>
<th>Magnetic Dip Lat. deg</th>
<th>Data Coverage</th>
<th>Solar flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jicamarca</td>
<td>0.7</td>
<td>2006.1~2006.12</td>
<td>86</td>
</tr>
<tr>
<td>Sao Luis</td>
<td>-2.0</td>
<td>2006.5~2006.12, 2010.1-2010.4</td>
<td>92</td>
</tr>
</tbody>
</table>
Higher occurrence rate in Jicamarca than in Sao Luis at post sunset. Why?
Magnetic meridian wind \((U)\) from HWM 93

\[U = u_E \sin D + u_N \cos D \]

Explanation:
When upward drift maximize, the equatorward wind develops quickly and maintains the formation of the F3 layer in Jicamarca, while the situation reverses in Sao Luis.
Conclusion:

- It is the first time the stratification structure of the F2 region is investigated by the COSMIC EDPs. The location of the F3 layer occurrence on a global scale are presented.

- These results indicate that the RO soundings are of sufficient high accuracy to differentiate the variation of very local and subtle structure.

- High occurrence of the sunset F3 layer should be distinguished from the traditional morning-noon F3 layer feature. The high occurrence of sunset F3 layers, longitude, which appear mainly at Jicamarca, is clearly dependent on the magnetic latitude as well as longitude.
Acknowledgement

CDAAC team for processing the COSMIC data
Dr. Xinan Yue
University Corporation for Atmospheric Research, Boulder, Colorado, USA

Prof. B. Reinisch for offering the DIDB database
University of Massachusetts Lowell