Assimilation of GOLD disk observations in WACCMX+DART for a better thermosphere #### Fazlul I. Laskar^{1.} N. M. Pedatella², M. V. Codrescu³, R. W. Eastes¹, and J. L. Anderson⁴, N. Peterson⁵, & T. E. Berger^{2,5} email: Fazlul.Laskar@lasp.colorado.edu ¹Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USA ²High Altitude Observatory, NCAR-NSF, Boulder, CO, USA ³Vector Space LLC, Boulder, CO, USA ⁴Data Assimilation Research Section, CISL, NSF-NCAR, Boulder, CO, USA ⁵Space Weather Technology, Research, and Education Center, University of Colorado, Boulder, CO, USA #### Plan of Talk - 1. Introduction - ☐ GOLD mission - ☐ GOLD data assimilations summary (earlier accomplishments) - 2. Relative importance of GOLD Tdisk and O/N2 (present effort) - 3. Summary & Future Directions #### Introduction: GOLD Mission Overview #### Host Mission • SES-14, in geostationary orbit at 47.5° west (over mouth of the Amazon River) #### GOLD Instrument Two identical, independent imaging spectrographs covering 132-162 nm #### Measurements - Earth's disk - Tdisk & O/N₂ Daytime: from spatial-spectral image cubes of O-135.6 nm and N₂-LBH emission - Nmax Nighttime: from images of 0-135.6 nm emission - Earth's limb - Texo Altitude profiles of N₂-LBH emission - O_2 density profile Stellar occultations ## **GOLD Day Disk Observations** GOLD 135.6 nm; 2018-10-15; 21:40-22:10 UT **Dayside (left)- OI-135.6 nm** and N₂-LBH bands emissions are the prominent signals. **N₂-LBH bands** shapes vary with ambient T, giving T_{disk}. O/N₂ is retrieved using OI-135.6 and N₂-LBH bands Nightside (right) - Ionospheric OI-135.6 nm emissions from radiative recombination. - **Currently GOLD Science data latency is months.** - Operational data with 20-35 minutes latency is possible. **GOLD** = **G**lobal-scale **O**bservations of the **L**imb & **D**isk 135.6 nm (kR) ## Example of GOLD T_{disk} and O/N₂ during Gannon Storm ## Dayside Disk Imaging, ΔT and $\Delta O/N_2$ (~160 km) \square A typical half hour image of O/N_2 and T_{disk} retrieved from GOLD radiances. Evans et al., 2024; GRL ## **GOLD T**_{disk} vs. solar and geomagnetic forcings • T_{disk} (& O/N₂) responds to both solar and geomagnetic changes. # Past Accomplishments in Assimilating GOLD Observations? #### Data Assimilation (DA): Data, Model, and Framework Lower atmosphere: Meteorological, TIMED-SABER T, and Aura-MLS T. Upper atmosphere: GOLD data (T_{disk}, or O/N2); 6 to 23 UT with varying coverage. - On an average ~1.5 million observations/day are assimilated. - ☐ Background model for the assimilation is **WACCMX 2.1**. - Data Assimilation Research Testbed (**DART**) is used for assimilation. #### Past Accomplishments & Future Questions OSSE: Observing System Simulation Experiment (Synthetic data) **OSE**: Observing System Experiment (Actual data) | Experiment | Observation | Validation
State/Obs. | References/Results | |------------|--|----------------------------------|---| | OSSE | GOLD T _{disk}
(Synthetic) | True State | Improved IT-system, (Laskar et al., 2021, JGR) | | OSE | GOLD T
(Real data) | GOLD O/N ₂
GPS TEC | Improved IT-system,
(Laskar et al., 2022, JGR) | | OSSE | GOLD O/N ₂ (Synthetic) | True State | Improved IT-system,
(Laskar et al., 2024, JGR) | Data Assimilation (DA) system = WACCMX+DART (State estimation) #### **Future Questions?** - \square Which one has a greater impact on the IT-system: T_{disk} or O/N_2 ? - \square How the actual O/N₂ assimilation performs? ### OSSE Experiments for relative impact study | Experiments | GOLD Observations
Assimilated | Validation State | |-------------------|--------------------------------------|------------------| | OSSE 1 | T _{disk} | True State | | OSSE 2 | O/N ₂ | True State | | OSSE 3 (combined) | O/N ₂ & T _{disk} | True State | | Truth | | | **OSSE:** Observing System Simulation Experiment (synthetic data) DA System: WACCMX+DART (state estimation) ## O/N₂ from OSSE-3 & Lower Atmosphere Only Assimilation \square Whole Atmosphere (WA=GOLD+LA) show improved O/N $_2$ # **O/N₂ RMSE**: O/N₂ & T_{disk} Combined OSSE 3 \square O/N₂ RMSE is best for the WA-analysis. # T_{disk} RMSE: O/N₂ & T_{disk} Combined OSSE 3 \square T_{disk} RMSE is improved for the analysis compared to forecast. # **TEC RMSE**: O/N₂ & T_{disk} Combined OSSE 3 ☐ TEC RMSE and bias are better for the WA (LA+GOLD). ## Which parameter $(O/N_2 \text{ or } T_{disk})$ has higher impact? ☐ Neutral density for the combined assimilation is closest to the truth. ## GOLD O/N₂ OSE (Real data assimilation) ☐ More than 50% data are rejected by the filter. ## GOLD O/N₂ OSE (Real data assimilation) ☐ Almost 90% data are assimilated. ### **Summary & Conclusions** - \square We have obtained improved IT-system by assimilating GOLD T_{disk} . - Combined $(T_{disk}$ and O/N_2) assimilation improves IT-system better compared to individual assimilation. - \Box T_{disk} improves thermosphere better compared to O/N_2 . #### **Future Efforts:** - \square Actual GOLD O/N_2 assimilation (to be continued...). - \square Combined assimilation (OSE) of GOLD T_{disk} and O/N_2 for improved Whole-Atmosphere-Ionosphere-Thermosphere (WAIT). - Transfer the knowledge and setup to JEDI-WACCMX, JEDI-WAM, etc. # Thank you! ## Extra Slides #### **Contribution Function & Effective Altitude** - ☐ Contribution Function (CF): It gives an estimate of the representative altitude. - ☐ The peak altitude of the CF varies with SZA and is near **150 km** for SZAs< 50 degrees. #### Further Improvement on 4D density: Data Assimilation Best density estimate will be from data assimilative modelling, e.g., **WACCMX+DART** or, from operational JEDI+WAM-IPE (SWORD-CoE). ## TEC RMSE: O/N₂ & T_{disk} Combined OSSE ☐ Predicted orbital parameters from Two-Line Element (TLE) data.