Assimilation of GOLD disk observations in WACCMX+DART for a better thermosphere

Fazlul I. Laskar^{1.}

N. M. Pedatella², M. V. Codrescu³, R. W. Eastes¹, and J. L. Anderson⁴, N. Peterson⁵, & T. E. Berger^{2,5}

email: Fazlul.Laskar@lasp.colorado.edu

¹Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USA

²High Altitude Observatory, NCAR-NSF, Boulder, CO, USA

³Vector Space LLC, Boulder, CO, USA

⁴Data Assimilation Research Section, CISL, NSF-NCAR, Boulder, CO, USA

⁵Space Weather Technology, Research, and Education Center, University of Colorado, Boulder, CO, USA

Plan of Talk

- 1. Introduction
 - ☐ GOLD mission
 - ☐ GOLD data assimilations summary (earlier accomplishments)
- 2. Relative importance of GOLD Tdisk and O/N2 (present effort)
- 3. Summary & Future Directions

Introduction: GOLD Mission Overview

Host Mission

• SES-14, in geostationary orbit at 47.5° west (over mouth of the Amazon River)

GOLD Instrument

 Two identical, independent imaging spectrographs covering 132-162 nm

Measurements

- Earth's disk
 - Tdisk & O/N₂ Daytime: from spatial-spectral image cubes of O-135.6 nm and N₂-LBH emission
 - Nmax Nighttime: from images of 0-135.6 nm emission
- Earth's limb
 - Texo Altitude profiles of N₂-LBH emission
 - O_2 density profile Stellar occultations

GOLD Day Disk Observations

GOLD 135.6 nm; 2018-10-15; 21:40-22:10 UT

Dayside (left)- OI-135.6 nm and N₂-LBH bands emissions are the prominent signals.

N₂-LBH bands shapes vary with ambient T, giving T_{disk}.

O/N₂ is retrieved using OI-135.6 and N₂-LBH bands

Nightside (right) - Ionospheric OI-135.6 nm emissions from radiative recombination.

- **Currently GOLD Science data latency is months.**
- Operational data with 20-35 minutes latency is possible.

GOLD = **G**lobal-scale **O**bservations of the **L**imb & **D**isk

135.6 nm (kR)

Example of GOLD T_{disk} and O/N₂ during Gannon Storm

Dayside Disk Imaging, ΔT and $\Delta O/N_2$ (~160 km)

 \square A typical half hour image of O/N_2 and T_{disk} retrieved from GOLD radiances.

Evans et al., 2024; GRL

GOLD T_{disk} vs. solar and geomagnetic forcings

• T_{disk} (& O/N₂) responds to both solar and geomagnetic changes.

Past Accomplishments in Assimilating GOLD Observations?

Data Assimilation (DA): Data, Model, and Framework

Lower atmosphere:
 Meteorological,
 TIMED-SABER T, and
 Aura-MLS T.

 Upper atmosphere: GOLD data (T_{disk}, or O/N2); 6 to 23 UT with varying coverage.

- On an average ~1.5 million observations/day are assimilated.
- ☐ Background model for the assimilation is **WACCMX 2.1**.
- Data Assimilation Research Testbed (**DART**) is used for assimilation.

Past Accomplishments & Future Questions

OSSE: Observing System Simulation Experiment (Synthetic data)

OSE: Observing System Experiment (Actual data)

Experiment	Observation	Validation State/Obs.	References/Results
OSSE	GOLD T _{disk} (Synthetic)	True State	Improved IT-system, (Laskar et al., 2021, JGR)
OSE	GOLD T (Real data)	GOLD O/N ₂ GPS TEC	Improved IT-system, (Laskar et al., 2022, JGR)
OSSE	GOLD O/N ₂ (Synthetic)	True State	Improved IT-system, (Laskar et al., 2024, JGR)

Data Assimilation (DA) system = WACCMX+DART (State estimation)

Future Questions?

- \square Which one has a greater impact on the IT-system: T_{disk} or O/N_2 ?
- \square How the actual O/N₂ assimilation performs?

OSSE Experiments for relative impact study

Experiments	GOLD Observations Assimilated	Validation State
OSSE 1	T _{disk}	True State
OSSE 2	O/N ₂	True State
OSSE 3 (combined)	O/N ₂ & T _{disk}	True State
Truth		

OSSE: Observing System Simulation Experiment (synthetic data)

DA System: WACCMX+DART (state estimation)

O/N₂ from OSSE-3 & Lower Atmosphere Only Assimilation

 \square Whole Atmosphere (WA=GOLD+LA) show improved O/N $_2$

O/N₂ RMSE: O/N₂ & T_{disk} Combined OSSE 3

 \square O/N₂ RMSE is best for the WA-analysis.

T_{disk} RMSE: O/N₂ & T_{disk} Combined OSSE 3

 \square T_{disk} RMSE is improved for the analysis compared to forecast.

TEC RMSE: O/N₂ & T_{disk} Combined OSSE 3

☐ TEC RMSE and bias are better for the WA (LA+GOLD).

Which parameter $(O/N_2 \text{ or } T_{disk})$ has higher impact?

☐ Neutral density for the combined assimilation is closest to the truth.

GOLD O/N₂ OSE (Real data assimilation)

☐ More than 50% data are rejected by the filter.

GOLD O/N₂ OSE (Real data assimilation)

☐ Almost 90% data are assimilated.

Summary & Conclusions

- \square We have obtained improved IT-system by assimilating GOLD T_{disk} .
- Combined $(T_{disk}$ and O/N_2) assimilation improves IT-system better compared to individual assimilation.
- \Box T_{disk} improves thermosphere better compared to O/N_2 .

Future Efforts:

- \square Actual GOLD O/N_2 assimilation (to be continued...).
- \square Combined assimilation (OSE) of GOLD T_{disk} and O/N_2 for improved Whole-Atmosphere-Ionosphere-Thermosphere (WAIT).
- Transfer the knowledge and setup to JEDI-WACCMX, JEDI-WAM, etc.

Thank you!

Extra Slides

Contribution Function & Effective Altitude

- ☐ Contribution Function (CF): It gives an estimate of the representative altitude.
- ☐ The peak altitude of the CF varies with SZA and is near **150 km** for SZAs< 50 degrees.

Further Improvement on 4D density: Data Assimilation

Best density estimate will be from data assimilative modelling, e.g., **WACCMX+DART** or, from operational JEDI+WAM-IPE (SWORD-CoE).

TEC RMSE: O/N₂ & T_{disk} Combined OSSE

☐ Predicted orbital parameters from Two-Line Element (TLE) data.

