
Tracing slant paths through 
structured grids

John Haiducek1, David Kuhl1, Douglas Allen1, Peter Caffrey1, Daniel 
Hodyss1, Victoriya Forsythe1, Hui Shao2 , Lindsey Mattson2, Nate 

Crossette2, Benjamin Ruston2

1US Naval Research Laboratory
2Joint Center for Satellite Data Assimilation

Distribution Statement A: Approved for public release. Distribution is unlimited



• Some grid geometries cannot be treated 
as a stack of 2-D grids at different altitudes

• Many observation operators require 
interpolating along a slant path through 
the model domain (e.g. TEC, GNSS-RO)

• Tracing through the grid along the 
observation line of sight provides an 
efficient means to perform the 
interpolation required for these cases

2

Overview/motivation



Dual-frequency GNSS signals can be 
used to estimate line-integrated 
electron density along the ray path 
from transmitter to receiver (called 
total electron content or TEC)

Applies to ground-based receivers 
and also satellite-based (e.g. radio 
occultation)

Direct processing requires integral 
along a slant path; transforms can be 
used to estimate vertical integrals or 
profiles from the raw data

3

GNSS observations

Illustration of GNSS ray paths through the ionosphere (Wu 2020)



Model Description

SAMI3: SAMI3 is Another 
Model of the Ionosphere 
(Navy non-releasable code)

Physics-based ionosphere 
model that solves the Euler 
equations for multiple ion 
species with 
ionosphere-specific forcing 
terms

PyIRI: Python IRI (Publicly 
Available)

Python re-write of IRI 
(much faster than IRI)

IRI: International Reference 
Ionosphere (Publicly 
Available)

Empirical (statistical) model 
that provides climatological 
average electron densities 
given a date, time, and 
solar flux parameter

4

Model descriptions

Global total electron density 
(TEC) from IRI (Najman+2014)

Electron density isosurfaces 
from a SAMI3 simulation



Thermosphere 
model

5

Model inputs/outputs

PyIRI
Date/time Electron 

densitySolar flux

SAMI3

Per-species ion density

Per-species ion velocity

Per-species ion temperature

Electron temperature

Geomagnetic 
activity

Plasma drift velocity

Neutral density

Neutral wind

Magnetosphere 
model

Solar wind

Electric field

Date/time

Solar flux

Electron 
density



• Serves as a testbed for using JEDI with SAMI3

• Publicly-available source code of PyIRI 
maximizes collaboration

• Wrapper around PyIRI enables it to use same 
JEDI interface as SAMI3
– Output interpolated onto a geomagnetic grid

– Electron density divided across ion species

– Output written in file formats resembling those 
used by SAMI3

6

PyIRI-JEDI

Snow

Constituents

Aerosols

Land

Waves

Atmosphere

JEDI
Ocean

Sea ice



7

Differences from typical atmospheric 
models

Terrestrial weather models SAMI3

Coordinate system Geographic (latitude, 
longitude, altitude)

Geomagnetic (magnetic latitude, 
magnetic longitude, altitude)

Grids Varied, but vertical columns 
over a spherical shell are 
common.

Grid follows magnetic field lines. 
Grid points do not align in vertical 
columns.

System of equations Navier-Stokes, possibly with 
chemistry

Euler equations plus a subset of 
Maxwell’s Equations, with ion 
chemistry

State variables Neutral densities, velocities, 
temperatures

Per-species ion densities, 
per-species temperatures, 
per-species velocities



Geomagnetic grid

• Grid aligns with magnetic field

• Native coordinates are geomagnetic

• Grid points concentrated at ionospheric altitudes



• JEDI observation operators operate 
on vertical columns

• Grid complexities not found in 
existing JEDI models:
– Grid points not in vertical 

columns (requires custom 
interpolator code)

– Number of points varies with 
latitude (addressed by storing 
interpolator output in an 
oversized buffer with fill values)

– Latitude/longitudes in 
geomagnetic (not geographic) 
coordinates

9

Grid interpolation



• Locate where ray intersects cell faces
• Interpolate within each face at the 

intersection point
• Implementation requires a structured grid of 

hexahedral cells
• No assumptions made about cell/vertex 

locations
• Agnostic to ray direction
• Currently, only straight rays are implemented 

(i.e. no refraction)

10

Ray-tracing based interpolation



• Once initial intersection is 
found, complexity is O(n) 
where n is the number of 
points in the column

• Finding initial intersection is 
O(2*(n

i
*n

j
+n

i
*n

k
+n

j
*n

k
)) but 

only has to be done once per 
ray (and could be sped up 
with a K-D tree or similar)

11

Ray-tracing based interpolation

Find initial 
intersection

Interpolate within 
face

Reached 
opposite grid 

boundary?

Locate exit 
face from 
next cell

Done

No

Yes



• Treats grid as a point cloud
• Connects grid points using 

triangles (tetrahedra in 3D case)
• Computational complexity is 

O(n
p
*log(n

p
)) where n

p
 is the 

number of points in the grid
• Locating an arbitrary point within 

the triangulation can cost up to 
O(n

t
) where n

t
 is the number of 

triangles

12

Delaunay triangulation

Example of a 2D Delaunay triangulation (Wikipedia)



• When viewed in geomagnetic coordinates, 
SAMI3 grid looks like a 2-D grid that was 
extruded in longitude

• Locating a point in longitude space is trivial 
(linear formula)

• Ray tracing can be performed in 2-D space, 
significantly reducing the computational cost

• Only works when the ray stays within a single 
longitude (i.e. vertical rays)

• Geographic input coordinates must be 
transformed to geomagnetic, and errors in this 
transform result in an incorrect interpolation

13

Reducing dimensionality



Speed comparison

Interpolation scheme Time to trace 
one profile (s)

2D trace 0.0024

3D trace 0.0254

2D Delaunay triangulation at 
each level

20.42

LinearNDInterpolator (3D 
Delaunay triangulation)

16.39*

*Plus 3 minutes to compute Delaunay triangulation, or 1-6 
seconds to read a pre-computed triangulation from disk.



Structured grid ray tracer with 
Cartesian coordinates

White areas on the plots are regions not covered by 
the grid

Analytic (truth) values Differences

Magnetic poles

Accuracy

Magnetic “prime meridian”



3D Delaunay triangulation

2D Delaunay triangulation per 
level (Python implementation)

abs(Interp – Truth)

3D trace in geographic 
coordinates

Accuracy
2D Delaunay triangulation per 
level (IDL implementation 1)

2D Delaunay triangulation per 
level (IDL implementation 2)

Interpolator RMS 
(area-weighted)

2D Delaunay, IDL 1 0.0369689

2D Delaunay, IDL 2 0.0645227

2D Delaunay, Python 0.3307453

3D Delaunay 0.0329854

3D trace 0.00723197



• Two observation operators 
implemented so far:
– Generic point observation 

operator that returns a state 
variable at a given latitude, 
longitude, and altitude

– Vertical total electron 
content (TEC) operator that 
gives the integral of electron 
density above a given 
latitude and longitude

17

Observation operators



• Ray tracing interpolator appears to be 
faster and more accurate than 
alternatives available to handle the 
SAMI3 grid

• Next steps:
– Interface interpolator to UFO

– Test slant path interpolation

– Investigate ways to support our grid 
geometry within atlas

18

Summary


