

Developing Space Weather Applications (SWA) of UFS in the Whole Atmosphere (WA) Modeling Framework

Valery A. Yudin (CUA, yudinv@cua.edu), Irfan S. Azeem (NOAA/NESDIS/SWO), Kevin Viner (CPI), Svetlana I. Karol (CU-CIRES), Timothy Fuller-Rowell (NOAA/SWPC, CU-CIRES), Wen Chen (NOAA/EMC), Tzu-Wei Fang (NOAA/SWPC) and Fanglin Yang (NOAA/EMC)

Operational SW Forecast System: WAM-IPE(GFSv13, 2016)

Data Assimilation: WAMDAS, 3DVAR-GSI (static B-errors)

Forecasts 0-80 km: deviates from UFS/GFSv16-17 + Ref. Models

Forecasts 80-600 km: biases of neutral composition & dynamics

(Deficiencies of WAM forecasts have been revealed-documented in R2O2R proposals).

UFS – Unified Forecast System of Weather Community

Motivation: WA extension of UFSWM close to GFSv16-17

Current and Planned Activity:

2018-2020, FV3WAM-150L (EMC/CU/SWPC)

2022-2025, FV3WAM-150L (EMC/CU/SWPC + CUA)

2025-pres, UFSWAM-196L (+ NESDIS/SWO)

current, UFSWAM-JEDI for OSSE (NESDIS/SWO+CUA)

Proposal for UFSWAM-196L/JEDI as SWA in UFS.

Reference 400 WAM-IPE Models Jan 2023 **SMAX** SWD-2023 Oxvaen (O **UFSWAM** Jan 2023 WAM-IPE **SMAX** UFSWAM Σ O/N₂ negative Tidal amplit.

Oberheide et al., 2025

bias of WAM-IPE. ~2 times larger

(release of SWA-LIES for R202R and SWy Centers of NASA & NOAA in 2026/27)

Towards Space Weather Application (SWA) in UFS: UFSWAM

UFSWAM, as the next configuration of NOAA SW model:

Atmosphere Model: UFSWAM (GFS-v16/17, 2022-25, NH FV3 dynamics)

Data Assimilation: JEDI, 3DEnVar in the NOAA operational workflow

Forecasts 0-60 km: Match GFSv16-17 forecasts & MERRA2, ERA-5

Forecasts 60-600 km: Remove/suppress biases of WAM-IPE

Three Motivations to advance UFSWAM as SWA in UFS:

- 1. Develop the community OSSE in UFSWAM-JEDI (WP-2022) for the next, current, and retrospective SW missions of NOAA and NASA;
- 2. Develop and test the SW Data Assimilation algorithms in UFSWAM, adapting JEDI for analysis of fast diurnal dynamics;
- 3. *Make first steps for SW Reanalysis in UFSWAM* (2018-present, 40-600 km, combining observations of winds, density, temp-re & composition).

SW ITM data-retro:

2000-2025

SABER

TIDI

ICON-T, ICON-Wind

GOLD

AWE

MLS

Radars

Lidars

GOCE, CHAMP,

GRACE, GRACE-FO

UFSWAM: Two Configurations and Infrastructure for UFS-SWA

δx-100km

Whole Atmosphere

NH FV³ DyCore GFDL

Vert-Lagrangian

Eulerian Layers

FV3-SLES

WA-NH DyCore with

Smagorinsky
without

δx-25km Large Eddy GW-phys.

Simulations (SLES)

Vert-Lagrangian

Eulerian Layers

Dynamics-Phys ics Coupling Eulerian Layers

Physics-CCPP

Suite: WAM_phys

Eulerian Columns

1) Orography, Res+SGS

2) SST-observed

UFS Input Files

3) CO₂, Aerosols, GHG

Space Weather Drivers:

Solar winds + Mag. Fields

Operational set of SWPC

IAU Replay Meteo-Fields

- 1) Horizontal Winds
- 2) Surface Pressure, Tracers

Eulerian Layers

Empirical WA Model:

NRLMSIS-2020: Temp-re Composition (NO, He, H)

Initialization of UFSWAM

- 1) Cold Start modified for WAM
- Restarts (extra-WAM tracers)

Output Files and Diagnostics, Input for IPE

- Instantaneous & Averaged
- 2) Tides Diurnal/Sub-diurnal oscillations

UFS-GW

- 3) Zonal Mean Diagnostics (TEM + EPF, Spectra)
- 4) IPE-state (Coupling to Ionosphere-Plasm-Elec)

Mag. Flux Tubes

Ionosphere-Plasmasph ere-Electrodynamics

Why Explore Two Configurations of UFSWAM for UFS-SWA and DA?

$$\frac{\partial X}{\partial t} = Dyn(X) + Phys(X) + Anal(X)$$

$$\frac{\partial X}{\partial t} = \frac{F_{dyn}(X)}{\tau_d(z)} + \frac{F_{phys}(X)}{\tau_p(z)} + \frac{F_{DAS}(X)}{\tau_{das}}$$

FV3-SLES
WA-NH DyCore with

without Smagorinsky
GW-phys. Large Eddy δx= 25km

Simulations (SLES)

Vert-Lagrangian Eulerian

Layers

SGS-GWP supports QBO-SAO in zonal winds

GW physics in the MLT (75-150 km) has fastest $\tau_{gw} \sim 0.5-2 \ hr$;

GW wind tendencies can replace impacts of the SABER-T

Analysis Increments for τ_{das} ~1hr window under limited ~3000 prof/day. DA in GW-resolving models without the 'fast' uncertain GW physics is desirable. Twin OSSE with SABER-T & ICON/TIDI winds using UFSWAM-SLES vs UFSWAM-GWP.

UFSWAM-SLES along AIRS (42 km) & AWE (87 km) swaths

Diagnostics of Resolved GWs: Energy Spectra, Wave Energy, RMS of observed fields, Momentum Fluxes and EPF for different L_h-bands

FV3-based models reproduce the mesoscale GW patterns observed from the troposphere to upper thermosphere.

FV3WAM-25 km displays seasonal migration of GW hotspots at ~30-40 km observed by HIRDLS EOS Aura and SABER/TIMED;

At 80 km-100 km GW diagnostics 'fit' locations of GW events seen by VIIRS radiances at ~100 km (Nov-DJ-Feb).

UFSWAM-SLES (C384): Effects of Mesoscale GWs Resolved by Dycore

July Sim. UFSWAM-C96 (100 km) with NGWs (top)
Zonal Wind UFSWAM-SLES (25 km) w/0 NGWs (middle)
& div(EPF) GEOS5/2016 25 km) with GWs + URAP (bottom)

Divergence of the Elliassen-Palm Fluxes, div(EPF), (resolved forcing) and its spectral distributions

UFSWAM & SABER: Migrating Tide Amplitudes (SW2 and DW1)

Needs for the Vertical Profile Data like SABER-Temp to Verify GW-tidal interactions in the MLT

Jan-Jul: Resolved GW-activity and Diurnal Tide

(UFSWAM-SLES versus SABER/TIMED-2023)

Thermosphere Composition (O and $\Sigma O/N_2$, 2019 SMIN) with SWD & subset of SWD: [F10.7/K_ -only]

UFSWAM: Retrospective Simulations of G5-Storm (May 10-13, 2024)

UFSWAM Hindcasts at 500 km

Storm Peak and 2-days later $T_{max} > 2500 \text{ K}$, $U_{max} > 1500 \text{ m/s}$

Density at 500 km May 1-18 GRACE-FO, HASDM UFSWAM (+30% bias removed)

Day and night Density May 1-18

May 2024 Storm: WAM-IPE/NWS vs FV3WAM-UFS (Density & ΣΟ/N₂)

Summary and Next Steps for Space Weather Applications in

- 1. Two WA configurations of UFS, *UFSWAM and UFSWAM-SLES*, were developed as extensions of GFSv16/17.
- 2. UFSWAM (100km) & UFSWAM-SLES (25 km) reproduce seasonal variations & variability of MF, tides, & GWs.
- 3. UFSWAMs addressed major "deficiencies" of WAM-IPE operational forecasts, except the 350-500 km density (GRACE-FO).
- 4. Current work: UFSWAM-SLES (25 km) constrained by GEOS meteorology for GW case studies (AWE, AIRS & SABER).
- 5. Next: Annual runs of UFSWAM-SLES will be assessed and suggested as NR for the Twin-OSSE to support SW missions.
- 6. As SWA, the UFSWAM performance will be advanced by JEDI adapted for analysis of SW retro-observations & OSSEs.

THANK YOU

Acknowledgements to Drs. Rashid Akmaev and Henry Juang

First Developers of WAM Framework at NOAA/NWS

The FV3WAM-150L (2022-25) are managed by NOAA/SWPC/EMC, T.-W. Fang & F. Yang. The 2025 work on UFSWAM-196L is supported by NOAA/SWO (Irfan Azeem) & NASA/GSFC (Antti Pulkkinen) through the CUA/PHASER (R. Robinson and J. Brosius).

Twin OSSE in Whole Atmosphere Models (*UFSWAM-WACCMX*):

Adapt and Test DA Algorithms for SWA and Support of Novel SW Missions

YEARS: 2002 04 2007 ... 2018 2020 2021 2022 2023 2024 2025 2031/2032

UFSWAM: Whole Atmosphere Extension of FV³ dycore into the Mesosphere-Thermosphere

UFSWAM
Smagorinsky
Large Eddy
Simulations
SLES

UFSWAM:

Whole Atmosphere Ext-FV³: Step 3

FV3 dycore on Eulerian (EL, 3 Steps) & Vertically Lagrangian (VL) layers

- S1) NH dycore ("acoustic" loop on VL)
- S2) Remap from VL to EL layers
- S3) 2D Molec-Eddy Diffusion (MED, EL)
- S4) Fixers (energy, mass, tracers) on EL

Five Upgrades of of FV³ Dycore

- 1) Variable Molec. Weight (μ : 29ae => 16ae) (μ , C_n , C_v , R/μ)
- 2) Gravity (9.81 m/s² => 8.2 m/s²);
- 3) New Tracers (O, O_2 , k=R/ C_p);
- 4) MED-operators (viscosity, heat conduction, & diffusion);
- 5) No Rayleigh Friction/Sponge

- 1) Radiation of GFS/UFS
- 2) WAM phys with Mol/Eddy processes
- 3) Standard UFS/GFS with UGWP-WAM

UFSWAM-SLES:

Mesoscale Large Eddy Simulations

FV3 dycore on Eulerian (EL, 3 Steps)

- & Vertically Lagrangian (VL) layers
- S1) NH dycore ("acoustic" loop on VL)
- S2) Remap from VL to EL layers
- S3) 3D Molecular-Eddy/LES Diffusion (EL)
- S4) Fixers (energy, mass, tracers) on EL

Dynamics-Physics Coupling (EL)

EL Column Physics: 3 steps

- 1) Radiation of GFS/UFS
- 2) WAM phys without Mol/Eddy processes
- 3) Standard UFS/GFS without UGWP-NGW

March: 'Consensus' between WAM-DAS and WACCM-X/GEOS (surf-50 km)

for migrating Tides and SW2 by FV3WAM-UFS (unconstrained)

