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Radiation Belt Electrons Loss

The fast dropout of the relativistic radiation belt electrons is one of the 
most compelling and outstanding questions in radiation belt studies.

1.8 MeV electron flux observed by Van Allen Probes
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Radiation Belt Electrons Loss Mechanisms
• Precipitation loss: pitch angle scattering by, 

e.g., VLF, EMIC waves, or field line curvature
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• Precipitation loss: pitch angle scattering by, 
e.g., VLF, EMIC waves, or field line curvature

• Magnetopause shadowing: combined with 
outward radial transport by ULF waves
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Radiation Belt Electrons Loss Mechanisms
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Event Overview

b1
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Huang et al., 2025



• 2D diffusion model (radial and pitch angle) 
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Model Description

Radial diffusion by ULF waves (Murphy et al., 2023)

Pitch angle diffusion by EMIC waves 
(based on Zhang et al., 2016), or by 
field line curvature (FLC) scattering 
(Young et al., 2008)

Electron lifetimes: on the order of 
electron drift periods outside the last 
closed drift shell (LCDS) (Huang et 
al., 2023) or inside the drift loss cone
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L = 4.0, Inside plasmapause

L = 5.0, Outside plasmapause

Huang et al., 2025
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Simulation Results

 

VAPB 1.8 MeV e- Flux PAD
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e- PSD: µ = 1934 MeV/G, K = 0.03 REG1/2
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VAPA 1.8 MeV e- Flux PAD

 

VAPB 1.8 MeV e- Flux PAD
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L* = 5.0, TS04, 12/31/2016 13UT

L* = 5.5, TS04, 12/31/2016 13UT

Equatorial Pitch Angle (◦)

Equatorial Pitch Angle (◦)
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Uncertainties in LCDS

e- Drift Orbit Bifurcation
LC

D
S

TS04
include DOB, K = 0.03 REG1/2

reject DOB, K = 0.03 REG1/2

include DOB, K = 0.11 REG1/2

reject DOB, K = 0.11 REG1/2
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Simulation Results

Huang et al., 2025



14 

Conclusions
� 1. The dropout of relativistic outer radiation belt electrons mainly 

results from the combined effects of MPS and EMIC wave 
scattering. MPS dominates the dropout at high L and high 
equatorial pitch angles, while EMIC wave scattering is the primary 
mechanism at low equatorial pitch angles over a wide L range in 
the outer radiation belt.

Scan for full paper

� 2. The FLC effect is negligible in contributing to the 
observed electron dropout inside the LCDS.

� 3. The diffusion model requires physical quantification 
of MPS and more realistic and event‐specific wave 
properties for EMIC wave scattering to better 
reproduce the observed electron dropout.



Backup 
Slides



Inner Magnetosphere: Waves
• A variety of electromagnetic waves 

exist in near-Earth space 
environment.
� ULF waves, Chorus, Hiss, EMIC, etc.

• These waves have different 
frequencies that can resonate with the 
characteristic motions of charged 
particles.
� Drift resonance, bounce resonance, gyro- 

resonance
Credit: NASA

16



17 

EMIC wave (Zhang et al., 2016)

% ADOPTED PARAMETERS (EMIC waves):

% B_w=1000.0 pT; MLT=21.0 ; 
lambda_min= 0.0 deg, lambda_max=40.0 deg;

% Density Model=C; Ne=  
0.1178923E+009m^-3; 
fpe/fce=  14.08; N_res = -5 ~ +5;

% omega_lc=     0.25 omega_eq, 
omega_uc=     0.99 omega_eq;

% theta_m= 0.0 deg, theta_w= 0.1 deg, 
theta_lc= 0.0 deg, theta_uc= 0.2 deg.


