

Satellite Drag Environment Prediction: Leveraging Data-Assimilative Driver Estimates

M. Pilinski^{1,2}, E. Sutton², W. Zhan², J. Knuth¹, S. Mutschler³, K. Tobiska³,

J. Steward⁴, M. Cooper⁴, C. Johnstone⁴

¹LASP, University of Colorado, ²SWxTREC, ³Space Environment Technologies, ⁴Orion Space Solutions LLC.

Wednesday 2025-09-10

Boulder, CO

Funded by NASA R2O2R

Challenges of Driver Forecast Integration

issued aeomaa.

- Simple approach: remove bias between estimated and nowcast/forecast states at the time of the forecast launch, t_i
- Some neutral density forecasting approaches use bias offset and regression methods to compute forecasts
- The bottom panel illustrates a linear-regression mapping of the recently issued [t_L-dt, t_L] nowcast from (black) and forecast (orange) to the DA-estimated drivers. This mapping changes with time and conditions
- How best to take advantage of recent DA driver estimates and recent forecast forcing performance?

Top Level Problem Description

Top Level Problem Description

	GCM	Non-GCM
DA Technique	IDEA (TIE-GCM Ensemble)	CAFE (MSIS 2.1 Ensemble)
Assimilated Dataset	GRACE-FO Accelerometers	Orbit-Avg. Drag from ground observations of ~70 calibration objects
Validation	Swarm POD	Swarm POD

Top Level Problem Description

Project Objectives:

- (a) Identify methodologies to map data-assimilative estimates of solar and geomagnetic drivers to operational forecast streams.
- (b) Evaluate the results using metrics relevant to LEO orbit forecasting over several years.

Driver Mapping

 $[t_i-dt, t_i]$

Definitive Drivers Known Ahead of Time

Issued (Official) Driver

$$[t_{L'}, t_{L} + dt_{hrz}]$$

DA Driver Estimate

[t_L-dt, t_L]

Other*

DA Driver Estimate

$$[t_L, t_L + dt_{hrz}]$$

*Other

- Season/Day of Year
- Time of Day
- 81-day trailing solar

• ..

Issued (Official) Driver

[t₁-dt, t₁]

Predicted F'cast Driver at t,

$$[t_L, t_L + dt_{hrz}]$$

DA Driver Estimate

Real-World Case Using Issued Predictions

ML or Other Tool

ML or Other Tool

DA Driver Estimate

$$[t_L, t_L + dt_{hrz}]$$

Examples of Post-Storm Discrepancy

Examples of Post-Storm Discrepancy

Swarm A & B Comparisons

2024 Validation Results, StdDev Logarithmic					
	Swarm-A (~480 km altitude)		Swarm-B (~520 km altitude)		
	1 Orbit	1/4 Orbit	1 Orbit	1/4 Orbit	
IDEA	0.042	0.095	0.078	0.126	
Dragster 1.0	0.066	0.107	0.059	0.110	
Dragster 1.0 DC*	0.063	0.100	0.057	0.103	
TIE-GCM GPI	0.287	0.323	0.311	0.353	
MSIS	0.142	0.170	0.144	0.177	

^{*}Density Corrected (DC), estimating both drivers and density corrections

Examples of Forecast Mapping Approaches

Algorithm	Strengths	Weaknesses	
Multiple linear regression	Simple, fast, interpretable Easy to implement & explain Effective when data is near-linear or has strong autocorrelation at lag=1	Only captures linear relationships Struggles with nonlinear, long-lag effects Sensitive to outliers	
NARX-MLP (Nonlinear autoregressive with external input)	Capable of modeling nonlinearities Can ingest multiple lagged inputs & exog Flexible architecture (number of layers)	May require careful feature engineering Can overfit if not enough data/regularized	
XGBoost (Extreme Gradient Boosting)	Strong performance in many tabular tasks Automatically handles some nonlinearities	Can require extensive hyperparameter tuning May struggle with very long-sequence dependencies	
GRU (Gated Recurrent Units)	Fewer parameters than LSTM, faster to train data or		
LSTM (Long short-term memory)	Remembers patterns across many timesteps Tends to require a lot of data		

Predictions (CAFE empirical example)

2019 Empirical-DA Predictions

Drivers

72-Hour "Forecast" using Definitive Drivers:

EDDYDIF: Fixed

NO Beta2: Fixed

Drivers

72-Hour "Forecast" using Definitive Drivers:

EDDYDIF: Variable

NO Beta2: Fixed

Drivers

72-Hour "Forecast" using Definitive Drivers:

EDDYDIF: Variable

NO Beta2: Temperature

Dependent

72-Hour "Forecast" using **Definitive Drivers:**

EDDYDIF: Variable

NO Beta2: Temperature

Dependent

Kp Bounds: Expanded

Geomag F'cst: Hp30

Blue Sky Thinking About Specifying and Forecasting the LEO Drag Environment

- How well do benefits of nowcast performance persist into the forecast?
- At what time scales does the importance of initial conditions (previous states) become relevant to the dynamic evolution of the thermosphere?
 - Under what conditions do GCM's offer benefits in the forecast over non-GCM's
- How do model quality and data coverage change nowcast (and forecast) quality?
 - When/where do we need more data?
 - How do we need to improve the models (and our understanding)?
 - At what time scales?

More specifically to this O2R...

- Are the estimated forcing states and their variability physical?
 To what extent?
- To what extent do they improve upon the operational indices/proxies?
- What are the estimation errors associated with the forcing states? To what extent are the geomagnetic vs. solar energy inputs observable?
- How can the DA-based forcing estimates be leveraged to produce enhanced forecast inputs?

CAFE DA Process

Assimilated Data Spatial Information

Assimilated Data Temporal Information

Dragster 2019 results

- Running around 20-30 x wallclock (on laptop M3 chipset)
- 50-70 satellites
- MSIS-2.1 background
 - 20 model ensemble members
 - 60 total
- 4-day assimilation windows
 - May want to consider 5
- Forecast launched every 12 hours
 - Changing this to 6 hours for future runs

	Dragster log Std	HASDM log Std	
Swarm-A	8.6%	8.5%	
Swarm-B	20.0%	20.4%	

SUVI Densities (Ed Thiemann, PI) and DA

NRLMSISE-00

250

(mod-obs)/obs

Altitude	Dawn MSIS STDEV	Dawn DA STDEV	
190 km	54%	23%	
195 km	58%	24%	
200 km	56%	23%	
225 km	53%	23%	
250 km	50%	23%	
275 km	47%	23%	
300 km	47%	24%	
325 km	42%	20%	
345 km	44%	22%	
average:	50%	23%	

Courtesy of Robert Sewell and Ed Thiemann

270

DOY 2019.00

280

260

IDEA Data Assimilation Method

- Estimates corrections to external solar and geomagnetic drivers
- Ensembles of TIE-GCM models (can also use WAM-IPE)
- Has been shown to provide better or comparable densities to HASDM*

2003 day 80-365, Orbit Average – Ratio Validation Results, RMSe Logarithmic, 1 storm with Kp>5+					
	IDEA	HASDM*	TIE-GCM GPI	JB-08	NRLMSISE-00
GRACE-A	0.076	0.072	0.273	0.172	0.266

^{*}HASDM is the DoD operational, empirical, and data assimilative High Accuracy Satellite Drag Model

IDEA Assimilating GRACE-FO

Sept. Equinox, 2021

Dragster DA 2019 Results

Challenges of Driver Forecast Integration

- Dragster and IDEA generate forecasts based on removing a bias between issued and forecast drivers at the time of the forecast launch.
- The bottom panel illustrates a linear-regression mapping of the recently issued nowcast (black) and forecast (orange) to the DA-estimated parameters.
 This mapping changes with time and conditions.
- Other neutral density forecasting approaches use bias offset or regression methods to compute forecasts
- How best to take advantage of recent DA driver estimates and recent forecast forcing performance?

Preliminary Driver Forecast Mapping Study

Observability w/ restricted Kp bounds:

Threshold= $\max(svd(M)) * \dim(M) * eps$ where $M = H^TWH + P_0^{-1}$

Observability w/ expanded Kp bounds:

Threshold= $\max(svd(M)) * \dim(M) * eps$ where $M = H^TWH + P_0^{-1}$

Observability of Driver Estimates

Observability of Driver Estimates

