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Challenges of Driver Forecast Integration
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• Simple approach: remove bias between 
estimated and nowcast/forecast states at the 
time of the forecast launch, t

L
• Some neutral density forecasting approaches 

use bias offset and regression methods to 
compute forecasts

• The bottom panel illustrates a linear-regression 
mapping of the recently issued [t

L
-dt , t

L
] 

nowcast from (black) and forecast (orange) to 
the DA-estimated drivers. This mapping 
changes with time and conditions

• How best to take advantage of recent DA 
driver estimates and recent forecast forcing 
performance?
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Top Level Problem Description
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GCM Non-GCM

DA Technique IDEA 
(TIE-GCM Ensemble)

CAFE 
(MSIS 2.1 Ensemble)

Assimilated Dataset GRACE-FO 
Accelerometers

Orbit-Avg. Drag from 
ground observations of 
~70 calibration objects

Validation Swarm POD Swarm POD



Top Level Problem Description
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Project Objectives:  
(a) Identify methodologies to map data-assimilative estimates of solar and 

geomagnetic drivers to operational forecast streams. 
(b) Evaluate the results using metrics relevant to LEO orbit forecasting over 

several years.



Driver Mapping
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*Other
• Season/Day of Year
• Time of Day
• 81-day trailing solar
• …

Definitive Drivers Known Ahead of Time

Real-World Case Using Issued Predictions
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Examples of Post-Storm Discrepancy
CAFE 1.0 (MSIS)
IDEA (TIEGCM)
Issued Kp

CAFE 1.0 (MSIS)
IDEA (TIEGCM)
TIEGCM

GPI
NRLMSISE-2.1
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Swarm A & B Comparisons
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2024 Validation Results, StdDev Logarithmic

Swarm-A (~480 km altitude) Swarm-B (~520 km altitude)

1 Orbit ¼ Orbit 1 Orbit ¼ Orbit

IDEA 0.042 0.095 0.078  0.126

Dragster 1.0 0.066 0.107 0.059 0.110

Dragster 1.0 DC* 0.063 0.100 0.057 0.103

TIE-GCM GPI 0.287 0.323 0.311 0.353

MSIS 0.142 0.170 0.144 0.177

*Density Corrected (DC), estimating both drivers and density corrections



Examples of Forecast Mapping Approaches
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Algorithm Strengths Weaknesses

Multiple linear regression

Simple, fast, interpretable
Easy to implement & explain
Effective when data is near-linear
or has strong autocorrelation at lag=1

Only captures linear relationships 
Struggles with nonlinear, long-lag effects
Sensitive to outliers

NARX-MLP 
(Nonlinear autoregressive with 

external input)

Capable of modeling nonlinearities
Can ingest multiple lagged inputs & exog
Flexible architecture (number of layers)

May require careful feature engineering
Can overfit if not enough data/regularized

XGBoost
(Extreme Gradient Boosting)

Strong performance in many tabular tasks
Automatically handles some nonlinearities

Can require extensive hyperparameter tuning
May struggle with very long-sequence 
dependencies

GRU
(Gated Recurrent Units)

Similar to LSTM but typically simpler 
Fewer parameters than LSTM, faster to train

May still be prone to overfitting with insufficient 
data or poor architecture

LSTM
(Long short-term memory)

Designed for sequence data (long lags
Remembers patterns across many timesteps

Higher complexity, slower training
Tends to require a lot of data



Predictions (CAFE empirical example)

2019 Empirical-DA Predictions

3-hour

6-hour

12-hour

24-hour

1-day

2-day

4-day

8-day



IDEA (TIE-GCM) Forecast Experiments: Definitive 
Drivers
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Observed

“Predicted” = Observed

72-Hour “Forecast” using 
Definitive Drivers:

EDDYDIF:  Fixed
NO Beta2: Fixed



IDEA (TIE-GCM) Forecast Experiments: Definitive 
Drivers
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Observed

“Predicted” = Observed

72-Hour “Forecast” using 
Definitive Drivers:

EDDYDIF:  Variable
NO Beta2: Fixed



IDEA (TIE-GCM) Forecast Experiments: Definitive 
Drivers
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72-Hour “Forecast” using 
Definitive Drivers:

EDDYDIF:  Variable
NO Beta2: Temperature 

Dependent

Observed

“Predicted” = Observed



IDEA (TIE-GCM) Forecast Experiments: Definitive 
Drivers
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72-Hour “Forecast” using 
Definitive Drivers:

EDDYDIF:  Variable
NO Beta2: Temperature 

Dependent
Kp Bounds: Expanded
Geomag F’cst: Hp30
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Thank You!

Blue Sky Thinking About Specifying and Forecasting the LEO Drag Environment

• How well do benefits of nowcast performance persist into the forecast?

• At what time scales does the importance of initial conditions (previous states) 
become relevant to the dynamic evolution of the thermosphere?
– Under what conditions do GCM’s offer benefits in the forecast over non-GCM’s

• How do model quality and data coverage change nowcast 
(and forecast) quality?
– When/where do we need more data?

– How do we need to improve the models (and our understanding)?

– At what time scales?



More specifically to this O2R…

• Are the estimated forcing states and their variability physical? 
To what extent?

• To what extent do they improve upon the operational 
indices/proxies?

• What are the estimation errors associated with the forcing 
states? To what extent are the geomagnetic vs. solar energy 
inputs observable?

• How can the DA-based forcing estimates be leveraged to 
produce enhanced forecast inputs?
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CAFE DA Process
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Assimilated Data Spatial Information
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Assimilated Data Temporal Information
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Dragster 2019 results

• Running around 20-30 x wallclock (on laptop 
M3 chipset)

• 50-70 satellites

• MSIS-2.1 background
– 20 model ensemble members

– 60 total

• 4-day assimilation windows
– May want to consider 5

• Forecast launched every 12 hours
– Changing this to 6 hours for future runs
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Dragster log Std HASDM log Std

Swarm-A 8.6% 8.5%

Swarm-B 20.0% 20.4%



SUVI Densities (Ed Thiemann, PI) and DA
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SUVI
Dragster DA
NRLMSISE-00

SUVI
Dragster DA
NRLMSISE-00

Altitude Dawn MSIS 
STDEV

Dawn DA 
STDEV

190 km 54% 23%

195 km 58% 24%

200 km 56% 23%

225 km 53% 23%

250 km 50% 23%

275 km 47% 23%

300 km 47% 24%

325 km 42% 20%

345 km 44% 22%

(mod-obs)/obs

50% 23%average:

Courtesy of Robert Sewell and Ed Thiemann



IDEA Data Assimilation Method
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• Estimates corrections to external solar and geomagnetic drivers
• Ensembles of TIE-GCM models (can also use WAM-IPE)
• Has been shown to provide better or comparable densities to HASDM* 

2003 day 80-365, Orbit Average – Ratio Validation Results, RMSe Logarithmic, 1 storm with Kp>5+

IDEA HASDM* TIE-GCM GPI JB-08 NRLMSISE-00

GRACE-A 0.076 0.072 0.273  0.172 0.266

*HASDM is the DoD operational, empirical, and data assimilative High Accuracy Satellite Drag Model



IDEA Assimilating GRACE-FO
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Sept. Equinox, 2021



Dragster DA 2019 Results
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Challenges of Driver Forecast Integration
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• Dragster and IDEA generate forecasts based on 
removing a bias between issued and forecast 
drivers at the time of the forecast launch.

• The bottom panel illustrates a linear-regression 
mapping of the recently issued nowcast (black) and 
forecast (orange) to the DA-estimated parameters. 
This mapping changes with time and conditions.

• Other neutral density forecasting approaches use 
bias offset or regression methods to compute 
forecasts

• How best to take advantage of recent DA driver 
estimates and recent forecast forcing 
performance?

DA
Issued Index
Forecast Index

ForecastRecent Values

ForecastRecent Values

Dragster
Issued Index
Forecast Index

Nowcast Mapping
Forecast Mapping

Nowcast Mapping
Forecast Mapping



26

Time (Days) Time (Days)

NAR (MSE=135.7) NARX (MSE=37.4)
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Validation of different regression prediction models for estimated forcing

Model Type F107 Val. MSE Kp Val. MSE

Neural Network 163 2.46

GPR 160 2.47

Ensemble 197 2.50

SVM 162 2.50

Tree 183 2.50

Linear Regression 204 2.51

Kernel 294 3.42

NARX using recent DA estimates 37 Under evaluation

Preliminary Driver Forecast Mapping Study
Nonlinear Autoregressive neural network, NAR 

(MSE=163)
NARX using recent values of DA-estimated forcing 

(MSE=37)



Observability w/ restricted Kp bounds:

Day of Year (2024)
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Threshold

 

Day of Year (2024)

 



Observability w/ expanded Kp bounds:

Day of Year (2024)
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Day of Year (2024)

 



Observability of Driver Estimates

29



Observability of Driver Estimates
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