

Impact of Ground-based Wind Measurements on Mesospheric and Lower Thermospheric Weather Through Assimilation in a Whole Atmospheric Model

C.-T. Hsu¹, N. M. Pedatella¹, A. T. Chartier², F. Sassi³, G. P. Liu³, D. Janches³, G. Chau⁴, F. J. Conte⁴

¹High Altitude Observatory, U.S. National Science Fundation National Center for Atmospheric Research

²Applied Physics Laboratory, Johns Hopkins University

³Goddard Space Flight Center, National Aeronautics and Space Administration

⁴Leibniz Institute of Atmospheric Physics, University of Rostock, Germany

Motivation

Space-based observation offers global coverage but is constrained by mission lifetimes and discontinuous temporal sampling in any given region.

- Ionosphere: COSMIC-I/II, DMSP
- Thermosphere: CHAMP, GRACE, Swarm, GOLD, ICON

Ground-based observations provide more continuous regional coverage:

- *Ionosphere:* GNSS-TEC, ionosondes (foF2/NmF2), ISR, plasma drifts
- Thermosphere: assimilation of neutral measurements remains limited

GOAL: Assimilate **SuperDARN** and meteor radar wind data into a whole-atmosphere model to improve the specification of the **Mesosphere–Lower Thermosphere (MLT)**.

MLT Wind Measured by Meteor Radar

- Meteor radars provide neutral wind data from ~80 to 100 km, with a vertical resolution of ~2 km.
- Both zonal and meridional wind profiles of the following 12 stations are assimilated.
- ~ 250 data points per hour are assimilated.

Station	Longitude	Latitude
Esrange	20.3	67.5
Bear Lake	-111.3	42
King-Edward-Point	-36.5	-54.3
Rothera	-68	-67.5
McMurdo	166.8	-77.9
Sodankyla	26.6	67.4
Cachoeira Paulista	-45.0	-22.2
Collm	13.0	51.3
SAAMER/Tierra del Fuego	-67.8	-53.8
MMARIA Norway	16.04	69.30
MMARIA German	11.70	53.98

MLT Wind Measured by SuperDARN

- The Super Dual Auroral Radar Network (SuperDARN) is an international collaboration of more than 35 radars worldwide.
- Each radar measures meteor echoes and derives hourly mean neutral winds weighted average over the 70–120 km altitude range.
- We focus on the most reliable component, the radar boresight direction.
- ~ 30 data points per hour are assimilated.

DART/WACCM

DART

- NCAR's Data Assimilation Research Testbed
- Provides various ensemble-based data assimilation methods, including Ensemble Adjustment Kalman Filter (EAKF)
- Supports various models and datasets.

WACCM

- NCAR's Whole Atmosphere Community Climate Model (WACCM)
- A general circulation model that simulates the atmosphere from the surface up to the lower thermosphere (~140 km).

From https://dart.ucar.edu/

About Research

Documentation

Tutorials

Get DART

Observing System Simulation Experiment (OSSE)

 OSSEs can be used to evaluate the impact of observing systems.

• Synthetic observations, sampled from SE-WACCM (0.25° \times 0.25°), are assimilated into FV-WACCM (2.5° \times 1.9°).

SE-WACCM (high-res)

Experiment Design

In EAKF (or other deterministic ensemble-based Kalman filter), we have:

$$\begin{split} \overline{\mathbf{X}}^{a} &= \overline{\mathbf{X}}^{b} + \mathbf{K}(\mathbf{y}^{o} - \mathbf{H}(\overline{\mathbf{X}}^{b})) \\ \mathbf{X}_{n}^{a} &- \overline{\mathbf{X}}^{a} = (\mathbf{X}_{n}^{b} - \overline{\mathbf{X}}^{b}) + \widetilde{\mathbf{K}}(-\mathbf{H}(\mathbf{X}_{n}^{b} - \overline{\mathbf{X}}^{b})) \end{split}$$

x model state variabley observation variableK Kalman gainH forward operator

	Yo	X
Exp 1	LA + SABER +MLS	T, U, V
Exp 2	LA + SABER +MLS + Meteor Radar wind+ SuperDARN wind	T, U, V

- 2018–2019 winter sudden stratospheric warming
- 40 ensemble members

Forward Operator:

Meteor radar wind

- linear interpolation
 SuperDARN wind
- weighted average over the 70–120 km (Gaussian)

Example of Result

- Example of vertical zonal wind profiles from data assimilation at the Esrange meteor radar site.
- The ensemble of wind profiles converge after data assimilation
- Ensemble mean shifts toward the observation after data assimilation

RMSE in Observation Space

RMSE(k)

$$= \sqrt{\frac{\sum_{n}^{nobs}(y(n,k) - y^{truth}(n,k))^{2}}{nobs}}$$

n: index of observation

k: index of time

- Meteor radar winds show significant improvements in both the zonal and meridional directions.
- SuperDARN winds do not show a clear impact □ check the H operator.

RMSE in Model Space Zonal Wind at 92 km

$$RMSE(i, j, k) = \sqrt{\frac{\sum_{k}^{ntime}(x(i, j, k) - x^{truth}(i, j, k))^{2}}{ntime}}$$

i: index of longitude

j: index of latitude

k: index of time

Errors are reduced around meteor radar stations.

OSSE w/ MLT wind Latitude -45 -90 60 120 180 300 OSSE w/o MLT wind Latitude 120 240 300 180 Difference Latitude -45

Red: error increases with MLT wind

Blue: error decreases with MLT wind

RMSE in Model Space Meridional Wind at 92 km

$$RMSE(i, j, k) = \sqrt{\frac{\sum_{k}^{ntime}(x(i, j, k) - x^{truth}(i, j, k))^{2}}{ntime}}$$

i: index of longitude

j: index of latitude

k: index of time

Significant error reductions are observed around meteor radar stations.

Latitude -45 60 120 180 240 300 OSSE w/o MLT wind Latitude -45 120 180 300 Difference 10 Latitude -45

OSSE w/ MLT wind

Red: error increases with MLT wind

Blue: error decreases with MLT wind

RMSE in Model Space Temperature at 92 km

$$RMSE(i, j, k) = \sqrt{\frac{\sum_{k}^{ntime}(x(i, j, k) - x^{truth}(i, j, k))^{2}}{ntime}}$$

i: index of longitude

j: index of latitude

k: index of time

- Clear error reductions are shown globally, even when assimilating neutral wind data.
- Aligned with previous studies (Chartier et al., 2013, 2016; Hsu et al., 2014)

Red: error increases with MLT wind Blue: error decreases with MLT wind

Conclusion

This study assimilates synthetic MLT wind observations (SuperDARN + meteor radars)
into a WACCM using DART/EAKF.

Key results:

- SuperDARN impact: Minimal on neutral wind specification due to limited observation density and the H operator.
- Meteor radar: Clear local improvements in zonal/meridional winds near sites, but spatially/temporally limited; corrections don't propagate or persist well.
- Assimilating MLT winds significantly improves global neutral temperature, indicating effective multivariate updates.

Future work:

- Optimize localization/inflation for MLT dynamics, especially for SuperDARN data.
- Explore joint updates of temperature, wind, and composition.

