Towards Whole Atmosphere Satellite Data Assimilation

Tomoko Matsuo, Brandon DiLorenzo, Clayton Cantrall (JHUAPL), and Stryder Demarois in collaboration with C.-T. Hsu (NCAR), A. Kubaryk (SWPC/CIRES), T. W. Fang (SWPC), T. Fuller-Rowell (SWPC/CIRES), N. Maruyama (CU), and H. Shao (JCSDA)

Why Whole Atmosphere DA?

The ionosphere-thermosphere system's **global structure and dynamical evolution** is influenced by vertical coupling of atmospheric layers.

Project Goals

- Leverage the global-scale view of the lower thermosphere provided by the GOLD and ICON missions.
- Capitalize on NOAA NWS whole atmosphere data assimilation and ensemble forecast system (that runs 24/7 since Feb 2022)
- Demonstrate the utility of GOLD disk radiance measurements for potential benefits to SWPC's space weather services

Why Whole Atmosphere DA?

The ionosphere-thermosphere system's **global structure and dynamical evolution** is influenced by vertical coupling of atmospheric layers.

Project Goals

- Leverage the global-scale view of the lower thermosphere provided by the GOLD and ICON missions.
- Capitalize on NOAA NWS whole atmosphere data assimilation and ensemble forecast system (that runs 24/7 since Feb 2022)
- Demonstrate the utility of GOLD disk radiance measurements for potential benefits to SWPC's space weather services

Demonstrated Impact of GOLD FUV Radiance Assimilation Through OSSEs with NOAA WAM

Reduction of model biases and uncertainty due to GOLD data

OSSE: EnSRF with 100 members

[Cantrall, Matsuo & Solomon, JGR, 2019]

Benefits of Assimilating from GOLD Level 1C Radiance Data

- f w Minimize representativeness error $f y = \mathcal{H}(f x) + m \epsilon$
- Make uncertainty quantification more tractable
 Absolute radiometrically-calibrated FUV intensities are not required

PCA of simulated TOA LBH emissions

FUV "temperature proxy"

[Cantrall and Matsuo, AMT, 2021]

FUV Temperature Proxy Computation from GOLD Level 1C Data Incorporated into GSI Observer Routines

Assimilation of GOLD FUV L1C Radiance Data into NOAA WAM

- Changes in temperature & composition due to GOLD radiance data assimilation
- Reduction of model uncertainty (ensemble spread) now shown

Cycling Experiment with NOAA GSI EnSRF – Nov 2-7, 2018

Ensemble Initialization

- One-month WAM forecast launched on Oct 1 through Nov 2
- 80-member ensemble
- Perturbed drivers: F10.7, Kp, hemispheric power, solar wind flow speed, proton density, and B_z

Cycling Experiment Set-up

- Starting 12 UT on Nov 2
- Ending 18 UT on Nov 7
- 6-hour measurement updates
 - GOLD Disk Observations only available at 12UT and 18UT
- Updating temperature and major thermosphere species (e.g., O, N₂, O₂)

Mass Density Changes at ~460 km by Assimilation of GOLD Radiance Data into WAM @ 12 UT Nov 6 $_{
ho~[10^{-13}~{
m kg/m^3}]~(Ens.~mea)}$

Tidal Diagnostics of Analysis Fields From GOLD Radiance Data Assimilation Into WAM

[Krier and England, 2024]

Work-in-progress: Towards transitioning current GSI capabilities to JEDI

- JEDI IODA provides a unified observation format, replacing GSI's Observer-specific file structures
- IODA supports multiple observation types and sensors (including GOLD radiances), streamlining integration into different DA systems
- Using IODA aligns GOLD with modern DA frameworks, enabling consistency across models

Towards Whole Atmosphere Satellite Data Assimilation

GOLD and ICON data

Better understand coupling of the upper and lower thermosphere regions

Summary

- Demonstrated a capability to assimilate GOLD radiance data into NOAA WAM-IPE using GSI
- Conducted a cycling experiment with GSI EnSRF

Nest Steps

- Adjust localization parameters
- Validate analysis fields with independent neutral mass density data sets
- Compare to ICON-TIEGCM HME data products
- Compare to GOLD tidal diagnostic analysis [e.g., Krier & England, 2024
]